1.1 Limits Graphically

What is a limit?

A limit is the _________ a function ____________ from both the left and the right side of a given ____________.

Example 1

Limit: (geeky math definition for Mr. Kelly)
Given a function f, the limit of $f(x)$ as x approaches c is a real number R if $f(x)$ can be made arbitrarily close to R by taking x sufficiently close to c (but not equal to c). If the limit exists and is a real number, then the common notation is $\lim_{x \to c} f(x) = R$.

What is a one-sided limit?

A one-sided limit is the _________ a function approaches as you approach a given ____________ from either the _____ or _____ side.

Example 2

“The limit of f as x approaches 3 from the left side is -1."

$\lim_{x \to 3^-} f(x) = -1$

“The limit of f as x approaches 3 from the right side is 2."

$\lim_{x \to 3^+} f(x) = 2$
1.1 Limits Graphically

Example 3

a. \(\lim_{x \to 2^-} f(x) = \)
 b. \(\lim_{x \to 2^+} f(x) = \)
 c. \(\lim_{x \to 2} f(x) = \)

 d. \(\lim_{x \to 1} f(x) = \)
 e. \(\lim_{x \to 0} f(x) = \)
 f. \(\lim_{x \to 3} f(x) = \)

 g. \(\lim_{x \to -1} f(x) = \)
 h. \(\lim_{x \to -3} f(x) = \)
 i. \(f(-2) = \)

j. \(f(1) = \)

When does a limit not exist?

1.
2.
3.

Example 4

Sketch a graph of a function \(g \) that satisfies all of the following conditions.

 a. \(g(3) = -1 \)
 b. \(\lim_{x \to 3} g(x) = 4 \)
 c. \(\lim_{x \to 2^-} g(x) = 1 \)
 d. \(g \) is increasing on \(-2 < x < 3\)
 e. \(\lim_{x \to 2^-} g(x) > \lim_{x \to 2^+} g(x) \)

Example 5

Write T (true) or F (false) under each statement. Use the graph on the right.

<table>
<thead>
<tr>
<th>a. (\lim_{x \to 1^-} f(x) = 1)</th>
<th>b. (\lim_{x \to 2} f(x) = 2)</th>
<th>c. (\lim_{x \to 1^+} f(x) = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. (\lim_{x \to 1^-} f(x) = 2)</td>
<td>e. (\lim_{x \to 1^+} f(x) =) does not exist</td>
<td></td>
</tr>
<tr>
<td>f. (\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x))</td>
<td>g. (\lim_{x \to 2} f(x) =) does not exist</td>
<td></td>
</tr>
</tbody>
</table>
1.1 Limits Graphically

For 1-5, give the value of each statement. If the value does not exist, write “does not exist” or “undefined.”

1.
 a. \(\lim_{x \to 1^-} f(x) = \)
 b. \(f(1) = \)
 c. \(\lim_{x \to 0} f(x) = \)

 d. \(\lim_{x \to 2^+} f(x) = \)
 e. \(f(-1) = \)
 f. \(f(2) = \)

 g. \(\lim_{x \to 1^+} f(x) = \)
 h. \(\lim_{x \to 1^-} f(x) = \)
 i. \(\lim_{x \to 2} f(x) = \)

2.
 a. \(\lim_{x \to 3^-} f(x) = \)
 b. \(f(1) = \)
 c. \(\lim_{x \to 1} f(x) = \)

 d. \(\lim_{x \to 2^-} f(x) = \)
 e. \(f(3) = \)
 f. \(\lim_{x \to 2} f(x) = \)

 g. \(\lim_{x \to 2} f(x) = \)
 h. \(f(-2) = \)
 i. \(f(4) = \)

3.
 a. \(\lim_{x \to 3} f(x) = \)
 b. \(f(3) = \)
 c. \(\lim_{x \to 0} f(x) = \)

 d. \(\lim_{x \to 3} f(x) = \)
 e. \(f(0) = \)
 f. \(\lim_{x \to 3} f(x) = \)

 g. \(\lim_{x \to 0} f(x) = \)
 h. \(f(1) = \)
 i. \(f(-1.6) = \)

4.
 a. \(\lim_{x \to 1^-} f(x) = \)
 b. \(f(2) = \)
 c. \(\lim_{x \to 2} f(x) = \)

 d. \(\lim_{x \to 1^-} f(x) = \)
 e. \(f(4) = \)
 f. \(\lim_{x \to 1} f(x) = \)

 g. \(\lim_{x \to 1^+} f(x) = \)
 h. \(f(1) = \)
 i. \(\lim_{x \to 4} f(x) = \)
5. a. \(\lim_{x \to 3} f(x) = \)
 b. \(f(-1) = \)
 c. \(\lim_{x \to 3} f(x) = \)

 d. \(\lim_{x \to -1} f(x) = \)
 e. \(f(-3) = \)
 f. \(\lim_{x \to 3^+} f(x) = \)

 g. \(f(3) = \)
 h. \(\lim_{x \to 0} f(x) = \)
 i. \(f(-4) = \)

6. Sketch a graph of a function \(f \) that satisfies all of the following conditions.
 a. \(f(-2) = 5 \)
 b. \(\lim_{x \to -2} f(x) = 1 \)
 c. \(\lim_{x \to 4^-} f(x) = 3 \)
 d. \(f \) is increasing on \(x < -2 \)
 e. \(\lim_{x \to 4^-} f(x) < \lim_{x \to 4^+} f(x) \)

7. Sketch a graph of a function \(g \) that satisfies all of the following conditions.
 a. \(g(1) = 3 \)
 b. \(\lim_{x \to -1} g(x) = -2 \)
 c. \(\lim_{x \to 3^-} g(x) = 5 \)
 d. \(g \) is increasing only on \(-5 < x < -3 \) and \(x > 1 \)
 e. \(\lim_{x \to 3^-} g(x) > \lim_{x \to 3^+} g(x) \)

8. Sketch a graph of a function \(h \) that satisfies all of the following conditions.
 a. \(\lim_{x \to 3} h(x) = h(-2) = 1 \)
 b. \(h(3) \) is undefined.
 c. \(\lim_{x \to -2^-} h(x) < \lim_{x \to -2^+} h(x) \)
 d. \(h \) is constant on \(-2 < x < 3 \) and decreasing everywhere else.
1. The graph of the function \(f \) is shown. Which of the following statements about \(f \) is true?

(A) \(\lim_{x \to a} f(x) = \lim_{x \to b} f(x) \)
(B) \(\lim_{x \to a} f(x) = 4 \)
(C) \(\lim_{x \to b} f(x) = 4 \)
(D) \(\lim_{x \to b} f(x) = 1 \)
(E) \(\lim_{x \to a} f(x) \) does not exist.

2. The figure below shows the graph of a function \(f \) with domain \(0 \leq x \leq 4 \). Which of the following statements are true?

I. \(\lim_{x \to 2^-} f(x) \) exists.
II. \(\lim_{x \to 2^+} f(x) \) exists.
III. \(\lim_{x \to 2} f(x) \) exists.

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

3. If \([x]\) represents the greatest integer that is less than or equal to \(x \), then \(\lim_{x \to 0^-} \frac{2}{[x]} = \)

(A) \(-2\)
(B) \(-1\)
(C) 0
(D) 2
(E) the limit does not exist

4. Consider the function \(y = f(x) \) shown below. Which of the following statements is true?

(A) \(\lim_{x \to 1} f(x) = 3 \)
(B) \(f(1) = 1 \)
(C) \(f(x) \) is continuous for all \(x \).
(D) \(\lim_{x \to 1} f(x) = f(1) \)
(E) None of the above