Draw a slope field for each of the following differential equations.

$$1. \ \frac{dy}{dx} = x + 1$$

$$3. \ \frac{dy}{dx} = x + 2y$$

$$2. \ \frac{dy}{dx} = 2y$$

$$4. \frac{dy}{dx} = \cos x \qquad \text{calculator}$$

Match the slope fields with their differential equations.

(D)

7.
$$\frac{dy}{dx} = \sin x$$
 8. $\frac{dy}{dx} = x - y$

$$9. \frac{dy}{dx} = 2 - y \qquad 10. \frac{dy}{dx} = x$$

$$10. \ \frac{dy}{dx} = x$$

$$\mathcal{D}$$

11.
$$\frac{dy}{dx} = .5x - 1$$
 12. $\frac{dy}{dx} = .5y$ 13. $\frac{dy}{dx} = -\frac{x}{y}$ 14. $\frac{dy}{dx} = x + y$

$$12. \frac{dy}{dx} = .5y$$

13.
$$\frac{dy}{dx} = -\frac{x}{y}$$

14.
$$\frac{dy}{dx} = x + y$$

15.

The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?

(A)
$$y = x^2$$

(B)
$$y = e^x$$

(C)
$$y = e^{-}$$

(D)
$$y = \cos x$$

16.

The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?

(A)
$$y = \sin x$$

(B)
$$y = \cos x$$

(C)
$$y = x^2$$

(B)
$$y = \cos x$$
 (C) $y = x^2$ (D) $y = \frac{1}{6}x^3$ (E) $y = \ln x$

$$(E) y = \ln x$$

- 17. Consider the differential equation given by $\frac{dy}{dx} = \frac{xy}{2}$.
 - (a) On the axes provided, sketch a slope field for the given differential equation.

$$y' = \frac{xy}{3} = \frac{(1)(1)}{3} = \frac{1}{3}$$

$$y - 1 = \frac{1}{3}(x - 1)$$

(b) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x) through the point (1, 1). Then use your tangent line y= 1/2 (x-1)+1 equation to estimate the value of f(1.2).

18. The figure below shows the slope field for the differential equation $\frac{dy}{dx} = \frac{x}{2y}$

a) Calculate $\frac{dy}{dx}$ at the point (3,3) and verify that the result agrees with the figure.

- b) Sketch the graph of the particular solution of the differential equation that contains the point (1,2).
- 19. The figure below shows the slope field for the differential equation $\frac{dy}{dx} = x y$

a) State a point where
$$\frac{dy}{dx} = 0$$
. Find $\frac{d^2y}{dx^2}$ and use it to verify if your point is a max or min.

$$y' = (x - y) \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \text{if yon 1.kr} \quad \frac{dy}{dx} = x - y \quad \frac{dy$$

b) Sketch the graph of the particular solution of the differential equation that contains the point (-3, -1).

MULTIPLE CHOICE

1.

The slope field for a differential equation is shown at right. Which statement is true for all solutions of the differential equation?

- For x < 0, all solutions are decreasing.
- All solutions level off near the x-axis. \checkmark
- III. For y > 0, all solutions are increasing $\sqrt{}$

(C) III only (E) I, II, and III

The slope field for the differential equation $\frac{dy}{dx} = \frac{x^2y + y^2}{4x + 2y}$ will have vertical segments when

$$(A) \ \ y = 2x$$

(C)
$$y = -x^2$$
 only

(D)
$$y = 0$$
 only

(A)
$$y = 2x$$
 (B) $y = -2x$ (C) $y = -x^2$ only (D) $y = 0$ only (E) $y = 0$ or $y = -x^2$

FREE REPSONSE

Your score: ____ out of 7 points

Question 5

Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y - 1$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.
- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.

see next page!

AP® CALCULUS AB 2007 SCORING GUIDELINES (Form B)

Question 5

Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y - 1$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)

- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0.7 Justify your answer.
- (d) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation.

(a)

2: Sign of slope at each point and relative steepness of slope lines in rows and columns.

(b) $\frac{d^2y}{dx^2} = \frac{1}{2} + \frac{dy}{dx} = \frac{1}{2}x + y - \frac{1}{2}$

Solution curves will be concave up on the half-plane above the line

1 ... 1

$$y=-\frac{1}{2}x+\frac{1}{2}.$$

(c) $\frac{dy}{dx}\Big|_{(0,1)} = 0 + 1 - 1 = 0$ and $\frac{d^2y}{dx^2}\Big|_{(0,1)} = 0 + 1 - \frac{1}{2} > 0$

Thus, f has a relative minimum at (0, 1).

- $3: \begin{cases} 2: \frac{d^2y}{dx^2} \\ 1: \text{ description} \end{cases}$
- $2: \left\{ \begin{array}{l} 1: answer \\ 1: justification \end{array} \right.$

(d) Substituting y = mx + b into the differential equation:

SICIP

$$m = \frac{1}{2}x + (mx + b) - 1 = \left(m + \frac{1}{2}\right)x + (b - 1)$$

Then $0 = m + \frac{1}{2}$ and m = b - 1; $m = -\frac{1}{2}$ and $b = \frac{1}{2}$.

 $2: \begin{cases} 1 : \text{value for } m \\ 1 : \text{value for } b \end{cases}$