2.2 Definition of the Derivative

Recall: Average rate of change =

Average rate of change on the interval [] is ___________

Definition of the Derivative:
This limit gives an expression that calculates the instantaneous rate of change (slope of the tangent line) of $f(x)$ at any given x-value.

$$f'(x) =$$

Notation for the Derivative:

<table>
<thead>
<tr>
<th>Lagrange</th>
<th>Leibniz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find the derivative using the Definition of the Derivative (limits).

1. $f(x) = 2x^2 - 7x + 1$
2. $y = \frac{1}{x}$
3. If f represents how many meters you have run and x represents the minutes, describe in full sentences the following:

$$f(8) = 1,500 \quad \quad \quad f'(3) = 161$$
2.2 Definition of the Derivative

Alternate Definition – Derivative at a Point:
Finding the derivative at a specific x-value ($x = c$).

\[f'(c) = \text{ or } f'(c) = \]

4. Find $f'(-2)$ if $f(x) = 2x^2 + 1$.

5. $f(x) = x^3 - \frac{3}{x}$ and $f'(x) = 3x^2 + \frac{3}{x^2}$
 Find the equation of the tangent line at $x = 2$.

Identify the original function $f(x)$, and what value of c to evaluate $f'(c)$.

6. \[\lim_{h \to 0} \frac{3 \ln(2+h) - 3 \ln 2}{h} \]

7. \[\lim_{x \to 7} \frac{1}{\sqrt{x^2 - 2x}} - \frac{1}{\sqrt{35}} \]
2.2 Definition of the Derivative
Calculus
Name: _____________________________

Find the derivative using limits. If the equation is given as \(y = \), use Leibniz Notation: \(\frac{dy}{dx} \). If the equation is given as \(f(x) = \), use Lagrange Notation: \(f'(x) \). WRITE SMALL!!

1. \(f(x) = 7 - 6x \)
2. \(y = 5x^2 - x \)
3. \(y = x^2 + 2x - 9 \)

4. \(y = \sqrt{5x} + 2 \)

5. \(f(x) = \frac{1}{x-2} \)

For each problem, create an equation of the tangent line of \(f \) at the given point. Leave in point-slope.

6. \(f(7) = 5 \) and \(f'(7) = -2 \)
7. \(f(-2) = 3 \) and \(f'(-2) = 4 \)
8. \(f(x) = 3x^2 + 2x; \) \(f'(x) = 6x + 2; \ x = -2 \)
9. \(f(x) = 10\sqrt{6x+1}; \quad f'(x) = \frac{30}{\sqrt{6x+1}}; \quad x = 4 \)

10. \(f(x) = \cos{2x}; \quad f'(x) = -2\sin{2x}; \quad x = \frac{\pi}{4} \)

11. \(f(x) = \tan{x}; \quad f'(x) = \sec^2{x}; \quad x = \frac{\pi}{3} \)

12. \(\lim_{h \to 0} \frac{3(1+h)^2 - 7(1+h) + 1 + 3}{h} \)

13. \(\lim_{h \to 0} \frac{\log(2-4(h-5)) - \log(22)}{h} \)

14. \(\lim_{x \to -2} \frac{(3x-9x^2) + 42}{x+2} \)

15. \(\lim_{x \to 5} \frac{1}{\sqrt{3x}} - \frac{1}{\sqrt{15}} \)

16. \(\lim_{h \to 0} \frac{e^{6(3+h)+1} - e^{19}}{h} \)

17. \(\lim_{x \to \frac{\pi}{2}} \frac{6x^2 \sin{x} - \frac{3}{2}\pi^2}{x - \frac{\pi}{2}} \)

Identify the original function \(f(x) \), and what value of \(c \) to evaluate \(f'(c) \).

18. \(C \) is the number of championships Sully has won while coaching basketball.
 \(t \) is the number of years since 2002 for the function \(C(t) \).
 \(C(12) = 3 \) and \(C'(12) = 0.4 \)

19. \(d \) is the distance (in miles) from home when you walk to school.
 \(h \) is the number of hours since 7:00 a.m. for the function \(d(h) \).
 \(d(0.2) = 0.5 \) and \(d'(0.2) = -11 \)
20. \(W \) is the number of cartoon shows Mr. Kelly watches every week.
\(x \) is the number of children Mr. Kelly has for the function \(W(x) \).
\(W(7) = 25 \) and \(W'(7) = 3 \)

21. \(g \) is the number of gray hairs on Mr. Brust’s head.
\(x \) is the number of students in his 4th period.
\(g(26) = 501 \) and \(g'(15) = 130 \)

2.2 Definition of the Derivative

1. Let \(f'(x) = \lim_{h \to 0} \frac{(x+h)^2-x^2}{h} \). For what value of \(x \) does \(f(x) = 4 \)?

(A) \(-4\) (B) \(-1\) (C) \(1\) (D) \(2\) (E) \(4\)

2. If \(f(x + y) = f(x) \cdot f(y) \) and if \(\lim_{h \to 0} \frac{f(h)-1}{h} = 6 \), then \(f'(x) = \)

(A) \(6\) (B) \(6 + f(x)\) (C) \(6 \cdot f(x)\)
(D) \(6 + f(h)\) (E) \(6 \cdot f(h)\)

3. Which of the following gives the derivative of the function \(f(x) = x^2 \) at the point \((2, 4)\)?

(A) \(\lim_{h \to 0} \frac{(x+2)^2-x^2}{4} \) (B) \(\lim_{h \to \infty} \frac{(2+h)^2-2^2}{h} \) (C) \(\frac{(2+h)^2-2^2}{h} \)
(D) \(\lim_{h \to 0} \frac{(2+h)^2-2^2}{h} \) (E) \(\lim_{h \to 0} \frac{(4+h)^2-4^2}{h} \)