2.2 Definition of the Derivative Name:

Recall: Average rate of change =

Notes

Average rate of change on the interval

is -

Defintion of the Derivative:

This limit gives an expression that calculates the instantaneous rate of change (slope of the tangent line) of f(x) at any given x-value.

$$f'(x) =$$

Notation for the Derivative:

|--|

Leibniz

Find the derivative using the Definition of the Derivative (limits).

1.
$$f(x) = 2x^2 - 7x + 1$$

2.
$$y = \frac{1}{x}$$

3. If f represents how many meters you have run and x represents the minutes, describe in full sentences the following:

$$f(8) = 1,500$$

$$f'(3)=161$$

Alternate Definition – Derivative at a Point:

Finding the derivative at a specific x-value (x = c).

$$f'(c) =$$

or
$$f'(c) =$$

4. Find
$$f'(-2)$$
 if $f(x) = 2x^2 + 1$.

5.
$$f(x) = x^3 - \frac{3}{x}$$
 and $f'(x) = 3x^2 + \frac{3}{x^2}$
Find the equation of the tangent line at $x = 2$.

Identify the original function f(x), and what value of c to evaluate f'(c).

6.
$$\lim_{h \to 0} \frac{3 \ln(2+h) - 3 \ln 2}{h}$$

7.
$$\lim_{x \to 7} \frac{\frac{1}{\sqrt{x^2 - 2x}} - \frac{1}{\sqrt{35}}}{x - 7}$$

2.2 Definition of the Derivative

Calculus Name:

Practice

Find the derivative using limits. If the equation is given as y=, use Leibniz Notation: $\frac{dy}{dx}$. If the equation is given as f(x)=, use Lagrange Notation: f'(x). WRITE SMALL!!

1.	f(x)	= 7	-6x

2.
$$y = 5x^2 - x$$

3.
$$y = x^2 + 2x - 9$$

4. $y =$	$\sqrt{5}x$	+	2
----------	-------------	---	---

5.
$$f(x) = \frac{1}{x-2}$$

For each problem, create an equation of the tangent line of f at the given point. Leave in point-slope.

6.
$$f(7) = 5$$
 and $f'(7) = -2$

7.
$$f(-2) = 3$$
 and $f'(-2) = 4$

8.
$$f(x) = 3x^2 + 2x$$
;

$$f'(x) = 6x + 2; \quad x = -2$$

9.
$$f(x) = 10\sqrt{6x+1}$$
;
 $f'(x) = \frac{30}{\sqrt{6x+1}}$; $x = 4$

10.
$$f(x) = \cos 2x$$
; $f'(x) = -2\sin 2x$; $x = \frac{\pi}{4}$ 11. $f(x) = \tan x$; $f'(x) = \sec^2 x$; $x = \frac{\pi}{3}$

11.
$$f(x) = \tan x$$
;
 $f'(x) = \sec^2 x$; $x = \frac{\pi}{3}$

Identify the original function f(x), and what value of c to evaluate f'(c).

$$\lim_{h \to 0} \frac{3(1+h)^2 - 7(1+h) + 1 + (3)}{h}$$

13.

$$\lim_{h \to 0} \frac{\log(2 - 4(h - 5)) - \log(22)}{h}$$

14.
$$\lim_{x \to -2} \frac{(3x-9x^2)+(42)}{x+2}$$

15.
$$\lim_{x \to 5} \frac{\frac{1}{\sqrt{3x}} - \frac{1}{\sqrt{15}}}{x - 5}$$

16.
$$\lim_{h \to 0} \frac{e^{6(3+h)+1} - e^{19}}{h}$$

17.
$$\lim_{x \to \frac{\pi}{2}} \frac{6x^2 \sin x - \frac{3}{2}\pi^2}{x - \frac{\pi}{2}}$$

For each problem, use the information given to identify the meaning of the two equations in the context of the problem. Write in full sentences!

18. *C* is the number of championships Sully has won while coaching basketball.

t is the number of years since 2002 for the function C(t).

$$C(12) = 3$$
 and $C'(12) = 0.4$

19. *d* is the distance (in miles) from home when you walk to school.

h is the number of hours since 7:00 a.m. for the function d(h).

$$d(0.2) = 0.5$$
 and $d'(0.2) = -11$

- 20. ${\it W}$ is the number of cartoon shows Mr. Kelly watches every week.
 - x is the number of children Mr. Kelly has for the function W(x).

$$W(7) = 25$$
 and $W'(7) = 3$

21. g is the number of gray hairs on Mr. Brust's head. x is the number of students in his 4^{th} period. g(26) = 501 and g'(15) = 130

Test Prep

2.2 Definition of the Derivative

- 1. Let $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 x^2}{h}$. For what value of x does f(x) = 4?
 - (A) -4
- (B) -1
- (C) 1
- (D) 2
- (E) 4
- 2. If $f(x + y) = f(x) \cdot f(y)$ and if $\lim_{h \to 0} \frac{f(h) 1}{h} = 6$, then f'(x) = 6
 - (A) 6

(B) 6 + f(x)

(C) $6 \cdot f(x)$

(D) 6 + f(h)

- (E) $6 \cdot f(h)$
- 3. Which of the following gives the derivative of the function $f(x) = x^2$ at the point (2, 4)?
 - (A) $\lim_{h\to 0} \frac{(x+2)^2 x^2}{4}$
- (B) $\lim_{h \to \infty} \frac{(2+h)^2 2^2}{h}$
- (C) $\frac{(2+h)^2-2^2}{h}$

- (D) $\lim_{h\to 0} \frac{(2+h)^2-2^2}{h}$
- (E) $\lim_{h\to 0} \frac{(4+h)^2-4^2}{h}$