3.2 Product and Quotient Rule

Find the derivative.
\[f(x) = (x + 4)(2x - 5) \]

PRODUCT RULE
\[
\frac{d}{dx} (uv) = \]

Find the derivative of the following.
\[f(x) = (3x^2 + 2x - 3)(x - 1) \]
\[y = (2x^{-3} + 4x + \pi)(4x + 1) \]

Evaluate
\[f(x) = \sqrt{x}(3x^2 - 3) \]
Find \(f'(4) \)

Find the derivative.
\[f(x) = \frac{x - 5}{2x + 1} \]

QUOTIENT RULE
\[
\frac{d}{dx} (uv) = \]
Find the derivative of the following.

\[f(x) = \frac{3x + 1}{2x^2} \]
\[y = \frac{2x^2}{3x + 1} \]

Horizontal Tangents

Find all horizontal tangents for \(y = \frac{2x^2}{3x + 1} \)

Find \(f'(4) \) given the following:

\(g(4) = 3 \) and \(g'(4) = -2 \)
\(h(4) = -1 \) and \(h'(4) = 5 \)

\[f(x) = g(x) - h(x) \quad f(x) = h(x) + 2 \quad f(x) = g(x) + 2h(x) \]

\[f(x) = \frac{h(x)}{g(x)} \quad f(x) = g(x)h(x) \]

SUMMARY:

Now, summarize your notes here!
3.2 Product and Quotient Rule

<table>
<thead>
<tr>
<th>Find the derivative of the following.</th>
<th>Find the derivatives of the following.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (f(x) = \frac{5x-2}{x^2+1})</td>
<td>7. (y = \frac{x}{x-1})</td>
</tr>
<tr>
<td>2. (g(x) = (2x + 1)(x^3 - 1))</td>
<td>8. (y = x^{-2}(ex^3 + 3))</td>
</tr>
<tr>
<td>3. (y = (3x^2 - 2x)(x^2 + 3x - 4))</td>
<td></td>
</tr>
<tr>
<td>4. (h(x) = \frac{6x^2+3x-5}{3x})</td>
<td></td>
</tr>
<tr>
<td>5. (f(t) = \frac{t+1}{\sqrt{t}})</td>
<td></td>
</tr>
<tr>
<td>6. (f(r) = r^2(5r^3 + 3))</td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{dy}{dx} =
\]

\[
\frac{d^2y}{dx^2} =
\]

\[
y' =
\]

\[
y'' =
\]
Given \(f(x) = (x^2 - 5)(3x + 2) \), find the following.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>(f'(2) =)</td>
</tr>
<tr>
<td>10.</td>
<td>Find the slope of (f(x)) at (x = -3).</td>
</tr>
<tr>
<td>11.</td>
<td>What is the slope of the tangent line of (f(x)) at the point ((4, 48))?</td>
</tr>
</tbody>
</table>

Is the slope of the tangent line positive, negative, or zero at the given point?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>(f(x) = \frac{2 - x}{x - 3}) at (x = 4)</td>
</tr>
<tr>
<td>13.</td>
<td>(g(x) = (x + 1)^2) at (x = -4)</td>
</tr>
</tbody>
</table>

Determine the \(x \)-values (if any) at which the function has a horizontal tangent line.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>(f(x) = \frac{4x^2 - 10x^2}{2x})</td>
</tr>
<tr>
<td>15.</td>
<td>(g(x) = \frac{x^2}{x + 1})</td>
</tr>
</tbody>
</table>

Write the equation of the tangent line and the normal line at the point given.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>(f(x) = \frac{x - 1}{x + 1}) at (x = 2)</td>
</tr>
</tbody>
</table>

Find \(f'(2) \) given the following.

\[
g(2) = 3 \quad \text{and} \quad g'(2) = -2 \\
h(2) = -1 \quad \text{and} \quad h'(2) = 4
\]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>(f(x) = 2g(x) + h(x))</td>
</tr>
<tr>
<td>18.</td>
<td>(f(x) = 4 - h(x))</td>
</tr>
<tr>
<td>19.</td>
<td>(f(x) = \frac{g(x)}{h(x)})</td>
</tr>
<tr>
<td>20.</td>
<td>(f(x) = g(x)h(x))</td>
</tr>
</tbody>
</table>
MULTIPLE CHOICE

1. Suppose \(f(x) \) is a differentiable function with \(f(1) = 2, f(2) = -2, f'(2) = 5, f'(1) = 3, \) and \(f(5) = 1. \)
 An equation of a line tangent to the graph of \(f \) is

 (A) \(y - 3 = 2(x - 1) \)
 (B) \(y - 2 = (x - 1) \)
 (C) \(y - 3 = 5(x - 1) \)
 (D) \(y - 2 = 3(x - 1) \)
 (E) \(y - 1 = 5(x - 2) \)

2. Let \(f \) and \(g \) be differentiable functions with the following properties:
 I. \(f(x) < 0 \) for all \(x \)
 II. \(g(5) = 2 \)
 If \(h(x) = \frac{f(x)}{g(x)} \) and \(h'(x) = \frac{f'(x)}{g(x)} \), then \(g(x) = \)

 (A) \(\frac{1}{f'(x)} \)
 (B) \(f(x) \)
 (C) \(-f(x) \)
 (D) \(0 \)
 (E) \(2 \)

3. At what point on the graph of \(y = \frac{1}{2}x^2 - \frac{3}{2} \) is the tangent line parallel to the line \(4x - 8y = 5 \) ?

 (A) \(\left(\frac{1}{2}, -\frac{3}{8} \right) \)
 (B) \(\left(\frac{1}{2}, -\frac{11}{8} \right) \)
 (C) \(\left(2, \frac{3}{8} \right) \)
 (D) \(\left(2, \frac{1}{2} \right) \)
 (E) \(\left(-\frac{1}{2}, -\frac{11}{8} \right) \)

4. If \(f(x) \) is continuous and differentiable and \(f(x) = \begin{cases} ax^4 + 5x; & x \leq 2 \\ bx^2 - 3x; & x > 2 \end{cases} \), then find the value of \(b. \)

 (A) 0.5
 (B) 0
 (C) 2
 (D) 6
 (E) There is no value of \(b. \)
5. Which of the following functions are continuous but not differentiable at \(x = 0 \)?

 I. \(f(x) = x^{\frac{1}{3}} \)
 II. \(g(x) = |x| \)
 III. \(h(x) = x|x| \)

 (A) I only
 (B) II only
 (C) I and II
 (D) II and III
 (E) I, II, and III

FREE RESPONSE

1. A continuous function \(g \) is defined on the closed interval \(-8 \leq x \leq 6\) and is shown above.

 (a) Find the approximate value of \(g'(4) \). Show the computations that lead to your answer.

 (b) Let \(h \) be the function defined by \(h(x) = \frac{g(x)}{x^2 + 1} \). Find \(h'(-2) \).