
17. $s(t)=\sqrt[3]{t-8}$

[All real numbers]
18. $h(t)=\frac{\sqrt{4-t}}{t-5}$

19. $g(x)=x^{2}+11 x+30$

[All real numbers]

Below is a table of values for a continuous function f. Use this table to answer questions 20-22.

x	3	4	5	6	7
$f(x)$	4	1	-3	-1	6

20. On the interval $3 \leq x \leq 7$, must there be a value of x for which $f(x)=5$? Explain.

Yes. On the interval $6 \leq x \leq 7$, the function changes from -1 to 6 . It must equal 5 at some point in that interval by way of the Intermediate Value Theorem.
21. On the interval $3 \leq x \leq 7$, could there be a value of x for which $f(x)=7$? Explain.

Yes. The function COULD increase to a value of 7 on any of the intervals, but it is not guaranteed because the largest value given is 6 .
22. What is the minimum number of zeros f must have on the interval $3 \leq x \leq 7$?

Below is a table of values for a continuous function g. Use this table to answer questions 23-26.

x	0	2	15	32	50
$g(x)$	-1	10	17	-10	8

23. On the interval $0 \leq x \leq 15$, must there be a value of x for which $g(x)=-3$? Explain.

No. The lowest value of g from the table on the interval $0 \leq x \leq 15$ is -1 . It is possible the value dips to $g(x)=-3$, but the IVT does not guarantee it.
24. On the interval $0 \leq x \leq 50$, must there be a value of x for which $g(x)=11$? Explain.

Yes. On the interval $2 \leq x \leq 15$, the function changes from 10 to 17 and on the interval $15 \leq x \leq 32$, the function changes from 17 to $-10 . g$ must equal 11 at some point in those intervals by way of the Intermediate Value Theorem.
25. What is the minimum number of zeros g must have on the interval $15 \leq x \leq 50$?
26. What is the minimum number of zeros g must have on the interval $0 \leq x \leq 50$?

```
Test Prep: 1E, 2A, 3D, 4A, 5E, 6B, 7E, 8C, 9D
```


Grading the Free Response for 1.4 Continuity DO NOT USE THIS UNTIL YOU ARE FINISHED WORKING ON THE PROBLEM!

Part a is worth 3 points.
1 Point: At $t=1$, the particle is at $y=-2$.
1 Point: As t approaches 3, the particle moves in a positive direction along the y-axis.
1 Point: At $t=3$, the particle disappears and reappears a $y=3$.

Part b is worth 2 points.
1 Point: The particle is moving in a negative direction.
1 Point: The particle moves ever more slowly towards $y=1$, but never reaches it.

Part c is worth 2 points.
1 Point: The Intermediate Value Theorem does not apply to either interval because f is not continuous on those intervals.
1 Point: Discontinuities at $t=1$ and $t=3$.

