1.4 Continuity

Calculus

Name: Solutions

Practice

Identify and classify each point of discontinuity of the given function.

1.
$$f(x) = \frac{x}{x+1}$$
 2. $f(x) = \frac{x^2}{x^2+3x}$

V.A. at
$$X=0$$
 V.A. at $X=-1$ $X=5$

$$2. \ f(x) = \frac{x^2}{x^2 + 3x}$$

3.
$$f(x) = \frac{2x}{2x-5}$$

4.
$$f(x) = \sqrt{2 - 6x}$$

Continuous on its

$$5. \ f(x) = \frac{x+2}{x^2 - 2x - 8}$$

$$(x - 4)(x+2)$$

6.
$$f(x) = \frac{4x+5}{3}$$

7.
$$f(x) = \begin{cases} 3 - 2x, & x < 2 \\ x - 3, & x \ge 2 \end{cases}$$

8.
$$f(x) = \begin{cases} 5x+1, & x \le -1 \\ x+3, & x > -1 \end{cases}$$

9.
$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 11}, & x < 4 \\ x - 3, & x > 4 \\ 5, & x = 4 \end{cases}$$

hole at
$$X=4$$

V.A. at $X=-11$

10.
$$f(x) = \begin{cases} \frac{x}{e} + 3, & x < e \\ \ln x^4, & x \ge e \end{cases}$$

Continuous

Find the domain of each function.

Jump Disc. at X = -1

11.
$$s(x) = \frac{\sqrt{6x-2}}{5} \ge 0$$

12.
$$w(t) = \frac{6}{\sqrt{2t+10}}$$

13.
$$f(x) = \frac{x}{\sqrt{6-2x}} > 0$$

14.
$$v(t) = \frac{3t}{t\sqrt{t+7}}$$

15.
$$g(x) = \frac{x+1}{x^2+5x+4}$$
 $(x+1)(x+4) = 6$

16.
$$g(w) = \frac{2}{4-\sqrt{w}}$$

W >0, W \$ 16

17. $s(t) = \sqrt[3]{t-8}$

R

[All real numbers]

18. $h(t) = \frac{\sqrt{4-t}}{t-5}$

t = 4

19. $g(x) = x^2 + 11x + 30$

R

[All real numbers]

Below is a table of values for a continuous function f. Use this table to answer questions 20-22.

х	3	4	5	6	7
f(x)	4	1	-3	-1	6

20. On the interval $3 \le x \le 7$, must there be a value of x for which f(x) = 5? Explain.

Yes. On the interval $6 \le x \le 7$, the function changes from -1 to 6. It must equal 5 at some point in that interval by way of the Intermediate Value Theorem.

21. On the interval $3 \le x \le 7$, **could** there be a value of x for which f(x) = 7? Explain.

Yes. The function **COULD** increase to a value of 7 on any of the intervals, but it is not guaranteed because the largest value given is 6.

22. What is the minimum number of zeros f must have on the interval $3 \le x \le 7$?

Below is a table of values for a continuous function q. Use this table to answer questions 23-26.

	0	2	1 5	22	E0.
X	0	2	15	32	50
g(x)	-1	10	17	-10	8

23. On the interval $0 \le x \le 15$, must there be a value of x for which g(x) = -3? Explain.

No. The lowest value of g from the table on the interval $0 \le x \le 15$ is -1. It is possible the value dips to g(x) = -3, but the IVT does not guarantee it.

- 24. On the interval $0 \le x \le 50$, must there be a value of x for which g(x) = 11? Explain. Yes. On the interval $2 \le x \le 15$, the function changes from 10 to 17 and on the interval $15 \le x \le 32$, the function changes from 17 to -10. g must equal 11 at some point in those intervals by way of the Intermediate Value Theorem.
- 25. What is the minimum number of zeros g must have on the interval $15 \le x \le 50$?
- 26. What is the minimum number of zeros g must have on the interval $0 \le x \le 50$?

Test Prep: 1E, 2A, 3D, 4A, 5E, 6B, 7E, 8C, 9D

Grading the Free Response for 1.4 Continuity DO NOT USE THIS UNTIL YOU ARE FINISHED WORKING ON THE PROBLEM!

Part *a* is worth 3 points.

1 Point: At t = 1, the particle is at y = -2.

1 Point: As t approaches 3, the particle moves in a positive direction along the y-axis.

1 Point: At t = 3, the particle disappears and reappears a y = 3.

Part *b* is worth 2 points.

1 Point: The particle is moving in a negative direction.

1 Point: The particle moves ever more slowly towards y = 1, but never reaches it.

Part *c* is worth 2 points.

1 Point: The Intermediate Value Theorem does not apply to either interval because f is not

continuous on those intervals.

1 Point: Discontinuities at t = 1 and t = 3.