10.1 Slope Fields

Write your

 questions here!

Differential Equations $=$ equation that involves a derivative

$$
\frac{d y}{d x}=2 x
$$

Create a Slope Field

$$
\frac{d y}{d x}=x y
$$

What is the slope at $(1,-2)$

Create a Slope Field

$$
\frac{d y}{d x}=y-2 x
$$

Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve $y=f(x)$ through the point $(1,-2)$.

Particular Solution

The figure below shows the slope for the differential equation $\frac{d y}{d x}=1-x y$

(A) Sketch the graph of a particular solution that contains $(0,2)$.
(B) Sketch the graph of a particular solution that contains $(1,-1)$.

Shown below is the slope field for which differential equation?

(A) $\frac{d y}{d x}=1+x$
(B) $\frac{d y}{d x}=x^{2}$
(C) $\frac{d y}{d x}=x+y$
(D) $\frac{d y}{d x}=\frac{x}{y}$
(E) $\frac{d y}{d x}=\ln y$

SUMMARY:

Draw a slope field for each of the following differential equations.

1. $\frac{d y}{d x}=x+1$

2. $\frac{d y}{d x}=x+2 y$

3. $\frac{d y}{d x}=2 y$

$$
\text { 4. } \frac{d y}{d x}=\cos x
$$

Match the slope fields with their differential equations.
(A)

(C)

(B)

(D)

7. $\frac{d y}{d x}=\sin x$
8. $\frac{d y}{d x}=x-y$
9. $\frac{d y}{d x}=2-y$
10. $\frac{d y}{d x}=x$

Match the slope fields with their differential equations.
(A)

(B)

(C)

(D)

11. $\frac{d y}{d x}=.5 x-1$
12. $\frac{d y}{d x}=.5 y$
13. $\frac{d y}{d x}=-\frac{x}{y}$
14. $\frac{d y}{d x}=x+y$
15.

The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=x^{2}$
(B) $y=e^{x}$
(C) $y=e^{-x}$
(D) $y=\cos x$
(E) $y=\ln x$
16.

The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=\sin x$
(B) $y=\cos x$
(C) $y=x^{2}$
(D) $y=\frac{1}{6} x^{3}$
(E) $y=\ln x$
17. Consider the differential equation given by $\frac{d y}{d x}=\frac{x y}{2}$.
(a) On the axes provided, sketch a slope field for the given differential equation.

(b) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve $y=f(x)$ through the point $(1,1)$. Then use your tangent line equation to estimate the value of $f(1.2)$.
18. The figure below shows the slope field for the differential equation $\frac{d y}{d x}=\frac{x}{2 y}$

a) Calculate $\frac{d y}{d x}$ at the point $(3,2)$ and verify that the result agrees with the figure.
b) Sketch the graph of the particular solution of the differential equation that contains the point $(1,2)$.
19. The figure below shows the slope field for the differential equation $\frac{d y}{d x}=x-y$

a) State a point where $\frac{d y}{d x}=0$. Find $\frac{d^{2} y}{d x^{2}}$ and use it to verify if your point is a max or min.
b) Sketch the graph of the particular solution of the differential equation that contains the point $(-3,-1)$.

MULTIPLE CHOICE

1.

The slope field for a differential equation is shown at right. Which statement is true for all solutions of the differential equation?
I. For $x<0$, all solutions are decreasing.
II. All solutions level off near the x-axis.
III. For $y>0$, all solutions are increasing
(A) I only
(B) II only
(C) III only
(D) II and III only \quad (E) I, II, and III

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | - | 1 | 1 | - | - | -1 | - | -1 | -1 | - | -1 | 1 | |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

2.

The slope field for the differential equation $\frac{d y}{d x}=\frac{x^{2} y+y^{2}}{4 x+2 y}$ will have vertical segments when
(A) $y=2 x$
(B) $y=-2 x$
(C) $y=-x^{2}$ only
(D) $y=0$ only
(E) $y=0$ or $y=-x^{2}$

FREE REPSONSE
Your score: \qquad out of 7 points

Question 5

Consider the differential equation $\frac{d y}{d x}=\frac{1}{2} x+y-1$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
(Note: Use the axes provided in the exam booklet.)
(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Describe the region in the $x y$-plane in which all solution curves to the differential equation are concave up.
(c) Let $y=f(x)$ be a particular solution to the differential equation with the initial condition $f(0)=1$. Does f have a relative minimum, a relative
 maximum, or neither at $x=0$? Justify your answer.

