Solve the differential equation.

1. \(\frac{dy}{dx} = -\frac{2x}{y} \)
2. \(\frac{dy}{dx} = y^2 \sin x \)
3. \(\frac{dy}{dx} = y(x + 2) \)

Find the solution that satisfies the given condition.

4. \(\frac{dy}{dx} = 2x^2y \) and \(y = 1 \) when \(x = 3 \)

5. The slope field of \(\frac{dy}{dx} = 2x^2y \) from question #4 is shown below. Draw the particular solution \(y = f(x) \) when \(f(3) = 1 \) that you found in question #4 on the slope field.
Find the solution that satisfies the given condition.

6. \(\frac{dy}{dx} = \frac{x+2}{y} \) and \(y = -2 \) when \(x = -3 \)

7. The slope field of \(\frac{dy}{dx} = \frac{x+2}{y} \) from question #6 is shown below. Draw the particular solution \(y = f(x) \) when \(f(-2) = -3 \) that you found in question #6 on the slope field.

ANSWERS TO CORRECTIVE ASSIGNMENT

1. \(y = \pm \sqrt{-2x^2 + c} \)

2. \(y = \frac{1}{\cos x + c} \)

3. \(y = e^{\frac{1}{2}x^2 + 2x + c} \)
 which turns into
 \(y = Ce^{\frac{1}{2}x^2}e^{2x} \)

4. \(y = e^{\frac{2}{3}x^3 - 18} \)
 which turns into
 \(y = \frac{1}{e^{18}}e^{\frac{2}{3}x^3} \)

5.

6. \(y = -\sqrt{x^2 + 4x + 7} \)

7.