Solve the differential equation.

1. $\frac{d y}{d x}=\frac{3 x^{2}}{y}$

$$
\begin{aligned}
y d y & =3 x^{2} d x \\
\int y d y & =\int 3 x^{2} d x \\
\frac{1}{2} y^{2} & =x^{3}+c \\
y^{2} & =2 x^{3}+c \\
y & = \pm \sqrt{2 x^{3}+c}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
\frac{d y}{d x} & =e^{x} y^{2} \\
\frac{1}{y^{2}} d y & =e^{x} d x \\
\int y^{-2} d y & =\int e^{x} d x \\
-y^{-1} & =e^{x}+c \\
-\frac{1}{y} & =e^{x}+c \\
\frac{1}{y} & =-e^{x}+c \\
y & =\frac{1}{-e^{x}+c}
\end{aligned}
$$

3. $\frac{d y}{d x}=-2 x(y-3)$

$$
\begin{aligned}
\frac{1}{y-3} d y & =-2 x d x \\
\int \frac{1}{y-3} d y & =\int-2 x d x \\
\ln |y-3| & =-x^{2}+c \\
e^{\ln |y-3|} & =e^{-x^{2}+c} \\
y-3 & =e^{-x^{2}+c} \\
y-3 & =e^{-x^{2}} e^{c} \\
y-3 & =C e^{-x^{2}} \\
y & =C e^{-x^{2}}+3
\end{aligned}
$$

4. $\frac{d y}{d x}=x \cos x^{2}$

$$
\begin{aligned}
d y & =x \cos x^{2} d x \\
\int d y & =\int x \cos x^{2} d x
\end{aligned} \quad u=x^{2} \quad d u=2 x d x
$$

Find the solution that satisfies the given condition.
5. $\frac{d y}{d x}=y \sin x$ if $y(0)=2$

$$
\frac{1}{y} d y=\sin x d x
$$

$$
\int \frac{1}{y} d y=\int \sin x d x
$$

$$
\begin{aligned}
& \ln |y|=-\cos x+c \\
& \ln 2=-\cos (0)+c \\
& \ln \alpha=-1+c \\
& \ln \alpha+1=c
\end{aligned}\left\{\begin{array}{l}
\ln |y|=-\cos x+c \\
e^{\ln |y|}=e^{-\cos x+c} \\
y=e^{-\cos x+c} \\
y=e^{-\cos x} e^{c} \\
y=c e^{-\cos x}
\end{array}\right.
$$

$$
y=(\ln 2+1) e^{-\cos x}
$$

7. $\frac{d y}{d x}=x y^{2}$ and $y=1$ when $x=0$

$$
\begin{aligned}
& \frac{1}{y^{2}} d y=x d x \\
& \int \frac{1}{y^{2}} d y=\int x d x \\
& -y^{-1}=\frac{1}{2} x^{2}+c \\
& -\frac{1}{1}=\frac{1}{2}(0)^{2}+c \\
& -1=0+c \\
& -1=c \\
& \left\{\begin{array}{l}
-\frac{1}{y}=\frac{1}{2} x^{2}-1 \\
\frac{1}{y}=-\frac{1}{2} x^{2}+1 \\
y=\frac{1}{-\frac{1}{2} x^{2}+1}
\end{array}\right.
\end{aligned}
$$

6. $\frac{d y}{d x}=\frac{e^{x}}{y}$ if $y(0)=-4$

$$
\begin{aligned}
y d y & =e^{x} d x \\
\int y d y & =\int e^{x} d x \\
\frac{1}{2} y^{2} & =e^{x}+C \\
\frac{1}{2}(-4)^{2} & =e^{0}+c \\
y & =1+c \\
7 & =c
\end{aligned}\left\{\begin{array}{l}
\frac{1}{2} y^{2}=e^{x}+7 \\
y^{2}=2 e^{x}+14 \\
y= \pm \sqrt{2 e^{x}+14}
\end{array}\right.
$$

Note: When you have a particular solution you must chose if it is the positive solution or the negative solution. In this case negative because the y-value is negative

Use the differential equation and its slope field to answer the following.
9. $\frac{d y}{d x}=(y+5)(x+2)$

$$
\begin{aligned}
& \frac{1}{y+5} d y=(x+2) d x \\
& \int \frac{1}{y+5} d y=\int(x+2) d x \\
& \ln |y+5|=\frac{1}{2} x^{2}+2 x+C
\end{aligned}
$$

$$
\begin{aligned}
\ln |1+5|=\frac{1}{2}(0)^{2}+2(0)+c \\
\ln 6=c
\end{aligned} \rightarrow \begin{aligned}
\ln |y+5| & =\frac{1}{2} x^{2}+2 x+\ln 6 \\
e^{\ln |y+5|} & =e^{1 / 2 x^{2}+2 x+\ln 6} \\
y+5 & =e^{1 / 2 x^{2}} \cdot e^{2 x} \cdot e^{\ln 6} \\
y+5 & =6 e^{1 / 2 x^{2}+2 x} \\
y & =6 e^{\left\langle\frac{1}{2 x^{2}+2 x \mid}-5\right.}
\end{aligned}
$$

10. $\frac{d y}{d x}=e^{x-y} \quad \frac{d y}{d x}=\frac{e^{x}}{e^{y}}$

$$
\begin{aligned}
e^{y} d y & =e^{x} d x \\
\int e^{y} d y & =\int e^{x} d x \\
e^{y} & =e^{x}+c
\end{aligned}
$$

a. Sketch a particular solution through the point $(0,2)$.
b. Find the particular solution $y=f(x)$ when $f(0)=2$

$$
\begin{array}{ll}
e^{2}=e^{0}+c \\
e^{2}=1+c \\
e^{2}-1=c
\end{array} \quad \begin{array}{ll}
e^{y} & =e^{x}+e^{2}-1 \\
\ln e^{y} & =\ln \left(e^{x}+e^{2}-1\right) \\
y & =\ln \left(e^{x}+e^{2}-1\right)
\end{array}
$$

MULTIPLE CHOICE

1. D
2. E
3. E
4. $\mathrm{C} \longrightarrow$ Note: I got $-\frac{1}{2} \ln \left(\frac{1}{2}\right)$ which you can write as $\frac{1}{2} \ln \left(\frac{1}{2}\right)^{-1}$ which is $\frac{1}{2} \ln (2)$
5. B

FREE RESPONSE

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 6

Consider the differential equation $\frac{d y}{d x}=e^{y}\left(3 x^{2}-6 x\right)$. Let $y=f(x)$ be the particular solution to the differential equation that passes through $(1,0)$.
(a) Write an equation for the line tangent to the graph of f at the point $(1,0)$. Use the tangent line to approximate $f(1,2)$.
(b) Find $y=f(x)$, the particular solution to the differential equation that passes through $(1,0)$.
(a) $\left.\frac{d y}{d x}\right|_{(x, y)=(1,0)}=e^{0}\left(3 \cdot 1^{2}-6 \cdot 1\right)=-3$

An equation for the tangent line is $y=-3(x-1)$.
$f(1.2) \approx-3(1.2-1)=-0.6$
(b) $\frac{d y}{e^{y}}=\left(3 x^{2}-6 x\right) d x$
$\int \frac{d y}{e^{y}}=\int\left(3 x^{2}-6 x\right) d x$
$-e^{-y}=x^{3}-3 x^{2}+C$
$-e^{-0}=1^{3}-3 \cdot 1^{2}+C \Rightarrow C=1$
$-e^{-y}=x^{3}-3 x^{2}+1$
$e^{-y}=-x^{3}+3 x^{2}-1$
$-y=\ln \left(-x^{3}+3 x^{2}-1\right)$
$y=-\ln \left(-x^{3}+3 x^{2}-1\right)$
Note: This solution is valid on an interval containing $x=1$ for which $-x^{3}+3 x^{2}-1>0$.
$3:\left\{\begin{array}{l}1: \frac{d y}{d x} \text { at the point }(x, y)=(1,0) \\ 1: \text { tangent line equation } \\ 1: \text { approximation }\end{array}\right.$
1: separation of variables
2 : antiderivatives
$6:\{1:$ constant of integration
1 : uses initial condition
1 : solves for y

Note: $\max 3 / 6[1-2-0-0-0]$ if no constant of integration

Note: $0 / 6$ if no separation of variables

