Calculus
\qquad

Finding the volume of a solid of revolution.
Notes

1. Sketch the area bounded by the equations. $y=x^{2}$, $y=0, x=2$.
2. Revolve it around the x-axis to create a solid.
3. What does the area of a cross section look like?
4. What is the area of a circle?
5. What is the radius of this circle?
6. What is the area of one cross-section?
7. What is the volume of the solid?

Volume of a Solid of Revolution

$$
V=
$$

where $R(x)$ is the "distance" between the axis of revolution and the outside of the object.

Example 2: $y=x+1, y=0, x=0, x=2$. Revolve about the x-axis.

Example 3: $y=3-x^{2}, y=2, x=0, x=1$. Revolve about the line $y=2$.

Write your questions
and thoughts here! and thoughts here!

Example 4: $x=2-y^{2}, x=1$. Revolve about the line $x=1$.

Example 5: $x=2-y^{2}, x=-2$. Revolve about the line $x=-2$.

11.2 Solids of Revolution (Discs)

Calculus

Practice

For each problem, sketch the area bounded by the equations and revolve it around the x-axis. Find the volume of the resulting solid formed by this revolution. Leave your answers in terms of π.

1. $y=-x+2, x=0, y=0$
2. $y=\sqrt{x}, x=1, x=4$
3. $y=4-x^{2}, y=0, x \geq 0$
4. $y=\sqrt{9-x^{2}}, x \geq 0, y=0$
5. $y=x^{3}, y=0, x=2$
6. $y=\sqrt{\sin x}, y=0, x=0, x=\pi$

Same instructions as above but revolve around the y-axis now. Again, leave your answers in terms of π.
7. $y=-x+2, x=0, y=0$
8. $y=\sqrt{x}, y=2, x=0$
9. $y=4-x^{2}, y=0, x \geq 0$
10. $y=\sqrt{9-x^{2}}, y=0, x \geq 0$

Same instructions as above but revolve around the given HORIZONTAL line.

11. $y=2-x^{2}$ and $y=1$ about the line $y=1$.
12. $y=x^{2}$ and $y=4$ about the line $y=4$.

Same instructions as above but revolve around the given VERTICAL line.

13. $y=\sqrt{x}, y=0, x=4$ about the line $x=4$.
14. $y=x, y=0, x=6$ about the line $x=6$.

11.2 Solids of Revolution (Discs)

1. What is the area of the region between the graphs of $y=x^{3}$ and $y=-x-1$ from $x=0$ to $x=2$?
(A) 0
(B) 4
(C) 5
(D) 8
(E) 10
2. Let $F(x)$ be an antiderivative of $\frac{2(\ln x)^{4}}{3 x}$. If $F(2)=0$, then $F(8)=$
(A) 5.163
(B) 0.860
(C) 0.184
(D) 0.180
(E) 0.004
3. The average value of $f(x)=-\sin x$ on the interval $[-2,4]$ is
(A) $\frac{\cos 4+\cos 2}{6}$
(B) $\frac{\cos 2-\cos 4}{2}$
(C) $\frac{\cos 4+\cos 2}{2}$
(D) $\frac{\cos 4-\cos 2}{2}$
(E) $\frac{\cos 4-\cos 2}{6}$
4. If $F(x)=\int_{1}^{x^{2}} \sqrt{t^{2}+3} d t$, then $F^{\prime}(2)=$
(A) $4 \sqrt{19}$
(B) $2 \sqrt{19}$
(C) $4 \sqrt{7}$
(D) $2 \sqrt{7}$
(E) $\sqrt{7}$
