
11.4 Perpendicular Cross Sections

Practice

Calculus

The base of an object is bounded by the lines y = x - 4, y = 4 - x, and x = 0. Find the volume of the object with the indicated cross sections taken perpendicular to the x-axis. Use a calculator after you set up the interal!

1. Squares A = 5 $5 = 8 - 2 \times$ $V = \int_{1}^{4} (8 - 2 \times)^{2} dx$

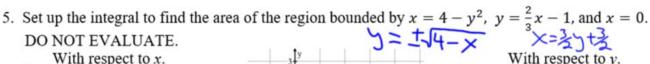
V≈ 85.333

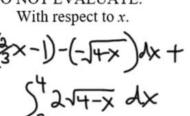
2. Equilateral triangles

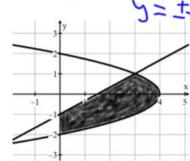
V≈ 36.95

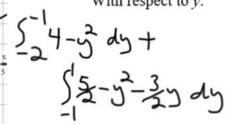
3. Semi-circles

A=をTrc2

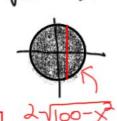

 $V = \int_{0}^{4} \frac{1}{2} \pi \left(\frac{8 - 2x}{2} \right)^{2} dx$


V=755 (8-2x) dx

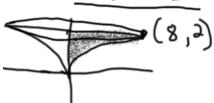

 $V \approx 33.51$


4. Isosceles right triangles (side is the base)

V=42.667



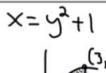
The base of an object is bounded by the lines $x^2 + y^2 = 100$. Find the volume of the object with the indicated cross sections taken perpendicular to the x-axis. Use a calculator after you set up the interal!


7. Equilateral triangles

8. Semi-circles

9. Isosceleş right triangles (hypotenuse = base)

V=1333.333


10. The region enclosed by the y-axis, the line y = 2, and the curve $y = \sqrt[3]{x}$ is revolved about the yaxis. Set up the integral used to find the volume of the solid that is generated.

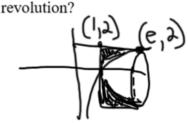
The base of an object is bounded by the lines $y = \sqrt{x-1}$, x = 3, and y = 0. Set up the integral to find the volume of the object with the indicated cross sections taken perpendicular to the <u>y</u>-axis. DO NOT EVALUATE.

11-3 5=2-5²

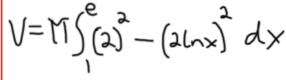
12. Equilateral triangles

V= 5/2 (2-43) dy

3-(5+1)


V= \frac{4}{5} (2-y) dy

13. Semi-circles


A= 3 c

14. Isosceles right triangles (side is the base)

15. The region in the first quadrant enclosed by the graphs of $y = 2 \ln x$, y = 2, and x = 1 is rotated about the x-axis. What is the integral that represents the volume of the resulting solid of

Test Prep: 1B

2003 Form A #

(c) Length =
$$\sqrt{x} - e^{-8\sigma}$$

Height = $5(\sqrt{x} - e^{-8\sigma})$

Volume =
$$\int_{T}^{1} 5 \left(\sqrt{x} - e^{-8\sigma} \right)^{2} dx = 1.554$$

$$3: \left\{ egin{array}{ll} 2: {
m integrand} \\ <-1> & {
m incorrect\ but\ has} \\ \sqrt{x}-e^{-8x} \\ {
m as\ a\ factor} \\ 1: {
m answer} \end{array}
ight.$$

where T = 0.238734