5.2 First Derivative Test

A particle moves along the *x*-axis with the position function given below. Describe its motion. $x(t) = \frac{8t}{t^2+1}$

NOTES

Use the First Derivative Test to find the relative extrema.

$$f(x) = (x^2 - 4)^{\frac{2}{3}}$$

Find the interval(s) where the function is increasing and decreasing. $f(x) = \frac{1}{2}x - \sin x$ on the interval $[0, 2\pi]$

SUMMARY:

Complete	the sig	n char	t and	locate	all	extrema

1. Given f(x) is continuous and differentiable.

Interval	(−∞,−2)	(-2, 0)	(0,3)	(3 ,∞)
Test Value	x = -4	x = -1	x = 1	x = 4
f'(x)	f(-4) = 4	f(-1) = -3	f(1) = -7	$f(4) = \frac{1}{2}$
Conclusion				

Use the First Derivative Test to locate the extrema. ALWAYS JUSTIFY!

2. $f(x) = x^3 - 12x + 1$

3. $g(x) = x^2(x-3)$

Determine where the function is increasing and decreasing. Find all extrema. ALWAYS JUSTIFY! 4. $f(x) = (x^2 - 1)^{\frac{2}{3}}$

Determine where the function is increasing and decreasing. Find the relative extrema. ALWAYS JUSTIFY!

5. $g(t) = 12(1 + \cos t)$ on the interval $(0, 2\pi)$

A particle moves along the *x*-axis with the position function given below. Find the velocity and use a sign chart to describe the motion of the particle.

6. $h(x) = -x^5 + \frac{5}{2}x^4 + \frac{40}{3}x^3 + 5$

7. $g(x) = e^{\cos x}$ on the interval $[0, 2\pi]$

MULTIPLE CHOICE

1. The graph of y = f(x) is shown below. Which of the following graphs could be the derivative?

- 2. Consider the graph of the function $f(x) = \sqrt[3]{x}$. Which of the following is true?
 - (A) f has a horizontal tangent x = 0.
 - (B) f has a vertical tangent x = 0.
 - (C) The slope of the tangent to the curve is increasing on the interval (-1, 1).
 - (D) Both (A) and (C)
 - (E) Both (B) and (C)

3. Given $f(x) = 2x^2 - 7x - 10$, find the absolute maximum of f(x) on [-1, 3].

- (A) –1
- (B) $\frac{7}{4}$
- (C) –13
- (D) $-\frac{129}{8}$
- (E) 0

- 4. If g is a differentiable function such that g(x) < 0 for all real numbers x, and if $f'(x) = (x^2 9)g(x)$, which of the following is true?
 - (A) *f* has a relative maximum at x = -3 and a relative minimum at x = 3.
 - (B) *f* has a relative minimum at x = -3 and a relative maximum at x = 3.
 - (C) f has relative minima at x = -3 and x = 3.
 - (D) *f* has relative maxima at x = -3 and x = 3.
 - (E) It cannot be determined if f has nay relative extrema.
- 5. An equation of the line tangent to the graph of $y = 3x \cos x$ at x = 0 is
 - (A) y = 2x
 - (B) y = 2x 1
 - (C) y = 3x + 1
 - (D) y = 3x 1
 - (E) y = 4x

FREE RESPONSE

Your score: _____ out of 4

- 1. The velocity of a particle moving on the x-axis is given by $v(t) = t^3 6t^2$ for the time interval $0 \le t \le 10$.
 - a. When is the particle farthest to the left? Justify.

b. When is the velocity of the particle increasing the fastest?