5.2 First Derivative Test

Write your questions here!

V

Curve Sketching

Sketch $f(x)=x^{3}-\frac{3}{2} x^{2}+2$

Interval			
Test Value			
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$			
Conclusion			

A particle moves along the x-axis with the position function given below. Describe its motion. $x(t)=\frac{8 t}{t^{2}+1}$

Use the First Derivative Test to find the relative extrema.
$f(x)=\left(x^{2}-4\right)^{\frac{2}{3}}$

Find the interval(s) where the function is increasing and decreasing. $f(x)=\frac{1}{2} x-\sin x$ on the interval $[0,2 \pi]$

Given the graph of \boldsymbol{f}^{\prime}, find all critical points and locate all relative extrema.

SUMMARY:

Complete the sign chart and locate all extrema.

1. Given $f(x)$ is continuous and differentiable.

Interval	$(-\infty,-2)$	$(-2,0)$	$(0,3)$	$(3, \infty)$
Test Value	$x=-4$	$x=-1$	$x=1$	$x=4$
$f^{\prime}(x)$	$f(-4)=4$	$f(-1)=-3$	$f(1)=-7$	$f(4)=\frac{1}{2}$
Conclusion				

Use the First Derivative Test to locate the extrema. ALWAYS JUSTIFY!
2. $f(x)=x^{3}-12 x+1$
3. $g(x)=x^{2}(x-3)$

Determine where the function is increasing and decreasing. Find all extrema. ALWAYS JUSTIFY!
4. $f(x)=\left(x^{2}-1\right)^{\frac{2}{3}}$
5. $g(t)=12(1+\cos t)$ on the interval $(0,2 \pi)$

A particle moves along the x-axis with the position function given below. Find the velocity and use a sign chart to describe the motion of the particle.
6. $h(x)=-x^{5}+\frac{5}{2} x^{4}+\frac{40}{3} x^{3}+5$
7. $g(x)=e^{\cos x}$ on the interval $[0,2 \pi]$

Given the graph of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, find the critical points and locate all relative extrema.

9.

Given the graph of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, find the critical points and locate all relative extrema.

10.

11.

Given the $f(x)$, sketch an approximate graph of $f^{\prime}(x)$.

12.

13.

Given the $f(x)$, find the following and sketch a graph of $f(x)$.
15. $f(x)=\frac{x^{2}-4}{2 x^{2}-2}$

Domain:

14.

Vertical Asymptote(s):
x-intercept(s):
y-intercept:
Make sign chart showing:

- Extrema
- Interval(s) where $f(x)$ increasing
- Interval(s) where $f(x)$ decreasing

MULTIPLE CHOICE

1. The graph of $y=f(x)$ is shown below. Which of the following graphs could be the derivative?

(C)

2. Consider the graph of the function $f(x)=\sqrt[3]{x}$. Which of the following is true?
(A) f has a horizontal tangent $x=0$.
(B) f has a vertical tangent $x=0$.
(C) The slope of the tangent to the curve is increasing on the interval $(-1,1)$.
(D) Both (A) and (C)
(E) Both (B) and (C)
3. Given $f(x)=2 x^{2}-7 x-10$, find the absolute maximum of $f(x)$ on $[-1,3]$.
(A) -1
(B) $\frac{7}{4}$
(C) - 13
(D) $-\frac{129}{8}$
(E) 0
4. If g is a differentiable function such that $g(x)<0$ for all real numbers x, and if $f^{\prime}(x)=\left(x^{2}-9\right) g(x)$, which of the following is true?
(A) f has a relative maximum at $x=-3$ and a relative minimum at $x=3$.
(B) f has a relative minimum at $x=-3$ and a relative maximum at $x=3$.
(C) f has relative minima at $x=-3$ and $x=3$.
(D) f has relative maxima at $x=-3$ and $x=3$.
(E) It cannot be determined if f has nay relative extrema.
5. An equation of the line tangent to the graph of $y=3 x-\cos x$ at $x=0$ is
(A) $y=2 x$
(B) $y=2 x-1$
(C) $y=3 x+1$
(D) $y=3 x-1$
(E) $y=4 x$

FREE RESPONSE

\qquad out of 4

1. The velocity of a particle moving on the x-axis is given by $v(t)=t^{3}-6 t^{2}$ for the time interval $0 \leq t \leq 10$.
a. When is the particle farthest to the left? Justify.
b. When is the velocity of the particle increasing the fastest?
