7.1 Rectangular Approximation

CALCULUS
Write your questions here!

Car travels 60 miles per hour

Left Endpoint Rectangle for interval [1,3] with n subintervals

$$
f(x)=x^{2}+1
$$

Right Endpoint Rectangle for interval [1,3] with n subintervals

$$
f(x)=x^{2}+1
$$

SUMMARY

Midpoint Rectangle for interval $[1,3]$ with n subintervals

$$
f(x)=x^{2}+1
$$

Sketch the following rectangular approximations

The rate at which water is being pumped into a tank is given by the continuous and increasing function $R(t)$. A table of selected values of $R(t)$, for the time interval $0<t<13$ minutes, is given below.

Time (minutes)	0	4	6	10	13
$R(t)$ (gallons/min)	7	13	18	23	27

Use right Riemann Sum with 4 subintervals to approximate the area under the curve.

What does this represent?

Is the approximation greater or less than the true value?

Use the graph to answer 1-3.

1. Is the rectangular approximation shown to the right a left endpoint, right endpoint, or midpoint approximation?
2. Is the approximation less than or greater than the true value?
3. What is the width of each rectangle?

You can use a calculator on 4-13

Sketch the following rectangular approximations. Find the width of each subinterval.

4. Midpoint on the interval $[1,4]$ with $n=6$ subintervals

Width of each subinterval =

5. Right Endpoint on [-2,2] with $n=5$ subintervals

Width of each subinterval $=$

6. Left Endpoint on $[-2,4]$ with $n=12$ subintervals
Width of each subinterval $=$

Approximate the area under the curve using the given rectangular approximation. Include a sketch! Justify!
7. $f(x)=\sqrt{9-x^{2}}$

Right Endpoint with 6 subintervals on the interval $[-2,1]$

8. $f(x)=\frac{1}{2} x^{3}-x^{2}+x+2$

Left Endpoint with 4 subintervals on the interval [1,3]

9. $f(x)=\sin x$

Right Endpoint with 3 subintervals on the interval [0,2]

10. $f(x)=\frac{e^{x}}{3}$

Midpoint with 4 subintervals on the interval [1,3]

Use the information provided to answer the following.

11. Let $y(t)$ represent the rate of change of the population of a town over a 20-year period, where y is a differentiable function of t. The table shows the population change in people per year recorded at selected times.

Time (years)	0	4	10	13	20
$\boldsymbol{y}(\boldsymbol{t})$ (people per year)	2500	2724	3108	3697	4283

a. Use the data from the table and a right Riemann Sum with four subintervals to approximate the area under the curve.
b. What does your answer from part (a) represent?
c. Assuming that $y(t)$ is a continuous increasing function, is your approximation from part (a) greater or less than the true value?

Use the information provided to answer the following.

12. A rectangular pool gets deeper from one end of the pool to the other. The table shows the depth $h(x)$ of the water at 4 foot intervals from one end of the pool to the other.

position, \boldsymbol{x} $($ feet $)$	0	4	8	12	16	20	24	28	32
$\boldsymbol{h}(\boldsymbol{x})$ $(f e e t)$	6.5	8	9.5	10	11	11.5	12	13	13.5

a. Use the data from the table to find an approximation for $h^{\prime}(10)$, and explain the meaning of $h^{\prime}(10)$ in terms of the depth of the pool. Show the computations that lead to your answer.
b. Use a midpoint Riemann Sum with 4 subintervals to approximate the area under the curve.
13. Particle A moves along a horizontal line with velocity $v(t)$, where $v(t)$ is a positive continuous function of t. The time t is measured in $\mathrm{cm} / \mathrm{sec}$. The velocity of the particle at selected times is given in the table.

t (sec)	0	2	5	7	10
$\boldsymbol{v}(\boldsymbol{t})$ $(\mathrm{cm} / \mathrm{sec})$	1.7	6.8	7.4	15.6	24.9

a. Use the data from the table to approximate the distance traveled by a particle A over the interval $0 \leq t \leq 10$ seconds by using a left Riemann Sum with four subintervals. Show the computations that lead to your answer.
b. Assuming that $v(t)$ is a continuous increasing function, is the approximation greater or less than the true value?
c. Particle B moves along the same horizontal line with position $x(t)=t e^{\sin 3 t}$. Which particle is traveling faster at time $t=5$? Explain your answer.

You can use a calculator on 1-8

MULTIPLE CHOICE

1. A left Riemann Sum with 4 equal subdivisions is used to approximate the area under the sine curve from $x=0$ to $x=\pi$. What is the approximation?
(A) $\frac{\pi}{4}\left(0+\frac{\pi}{4}+\frac{\pi}{2}+\frac{3 \pi}{4}\right)$
(B) $\frac{\pi}{4}\left(0+\frac{1}{2}+\frac{\sqrt{3}}{2}+1\right)$
(C) $\frac{\pi}{4}\left(0+\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}\right)$
(D) $\frac{\pi}{4}\left(0+\frac{1}{2}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}\right)$
(E) $\frac{\pi}{4}\left(\frac{1}{2}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}+1\right)$
2. A truck moves with positive velocity $v(t)$ from time $t=3$ to time $t=15$. The area under the graph of $y=v(t)$ between 3 and 15 gives
(A) the velocity of the truck at $t=15$
(B) the acceleration of the truck at $t=15$
(C) the position of the truck at $t=15$
(D) the distance traveled by the truck from $t=3$ to $t=15$
(E) the average position of the truck in the interval from $t=3$ to $t=15$
3. The first derivative of the function f is given by $f^{\prime}(x)=\frac{\sin ^{2} x}{x}-\frac{2}{9}$. How many critical values does f have on the open interval $(0,10)$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Six
4. If $y=\sin (x-\sin x)$, what is the smallest positive value of x for which the tangent line is parallel to the x-axis?
(A) 1.677
(B) 2.310
(C) 3.142
(D) 3.973
(E) 6.283
5. A particle's height at a time $t \geq 0$ is given by $h(t)=100 t-16 t^{2}$. What is its maximum height?
(A) 312.500
(B) 156.250
(C) 78.125
(D) 6.250
(E) 3.125
6. The speeds of a bicyclist at various times t are given in the table below. Assume that the bicyclist's acceleration is positive on $(0,3)$ and negative on $(3,6)$. If at $t=3$ minutes, the bicycle has traveled 1.25 miles, then at $t=4$ minutes, which of the following could represent the total distance traveled by the bicyclist?

Minutes	0	1	2	3	5	6	7
Miles/hour	0	20	40	45	35	20	5

(A) 1.5 miles
(B) 1.9 miles
(C) 1.25 miles
(D) 2 miles
(E) 1.8 miles
7. The graph of a function, f, is shown below. What can be deduced about the function from its graph?

NOTE:

\in is the "element of" symbol, it is used to show membership in a set of numbers. So, $x \in(-\infty, 2)$ means all values of x are in the open interval $(-\infty, 2)$
(A) $f^{\prime \prime}(x)<0$ for $x \in(-\infty, 2)$
(B) $f^{\prime \prime}(2)=0$
(C) $f^{\prime \prime}(x)>0$ for $x \in(2, \infty)$
(D) $x=2$ is a point of inflection for f.
(E) All of the above
8. The table below shows selected values of $f(x)$ and $g(x)$. If $h(x)=g(f(x))$, what is $h^{\prime}(1)$?
(A) 1
(B) 3
(C) 9
(D) 15

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$	$\boldsymbol{g}^{\prime}(\boldsymbol{x})$
1	1	3	1	5
3	5	1	5	3
5	3	5	3	1

(E) 25

