

n = 4 subintervals on [-1,3]

Use the calculator to find the exact value of the definite integral.				
7.	8.	9.	10.	
$\int_{1}^{9} (x^3 - 2x^2 + 1)dx$	$\int_{-2}^{e} (e^{x-1}) dx$	$\int_{\pi}^{\frac{3\pi}{2}} (\cos^2 x) dx$	$\int_{1}^{e} \left(\frac{4-x}{2x+1}\right) dx$	

Use the information provided to answer the following.

11. Let v(t) represent the rate of change of a hot air balloon over time, where v is a differentiable function of t. The table shows the rate of change at selected times. The balloons height at t = 0 was 50 meters.

Time (minutes)	4	8	10	13	15
$m{v}(t)$ (meters/min)	5.2	6.3	7.1	7.9	8.4

a. Use the data from the table and a trapezoidal approximation with four subintervals. Show the computations that lead to your answer.

- b. What is the approximate height of the balloon at 15 minutes?
- 12. A particle moves along a horizontal line with a positive velocity v(t), where v is a differentiable function of t. The time t is measured in seconds, and the velocity is measured in cm/sec. The velocity of the particle at selected times is given in the table below. The position of the particle at t = 0 is 22 cm.

Time (sec)	0	3	5	9	12
v(t) (cm/sec)	21	18	15	23	27

- a. Use data from the table to find an approximation for v'(7). Show the computations that led to your answer. Indicate units of measure.
- b. Use the data from the table and a trapezoidal approximation with four subintervals. Show the computations that lead to your answer.
- c. What is the approximate position of the particle after 12 seconds?

$1.\int_{-1}^{3}f(x)dx$	$2. \int_{-3}^{0} h(x) dx$	$3. \int_{-2}^{3} g(x) dx$	4. 20.287
5. 16.781	6. 42	7. 4.6	8. 5.525
9. 0.785	10. 0.858	11. a. 75.2 b. 125.2 meters	12. a. 2 cm/sec ² b. 242.5 c. 264.5 cm

ANSWERS TO CORRECTIVE ASSIGNMENT 7.2