5.9 Connecting f, f', and f''

Calculus

1. A particle's position along the x-axis is measured by $x(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 1$ where t > 0. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

$$V(t) = t^{2} - 6t + 8$$

$$(t - 4)(t - 2) = 0$$

$$t = 4$$

$$t = 3$$

$$t = 4$$

$$V(t) + 0 - 0 + 0$$

$$t = 4$$

$$t = 3$$

$$t = 6$$

$$t = 3$$

$$t = 3$$

$$t = 6$$

$$t = 3$$

$$t = 6$$

$$t = 3$$

$$t = 6$$

$$t = 3$$

$$a(t) = -10$$

$$a(t) = -1$$

2. A particle's position along the y-axis is measured by $y(t) = t - 3(t - 4)^{\frac{1}{3}}$ where t > 0. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

$$V(t) = 1 - (t-4)^{-\frac{1}{3}} = 0$$

$$C_{1}P. \text{ at } t = 4$$

$$(t-4)^{\frac{1}{3}} = 1$$

$$1 = (t-4)^{\frac{1}{3}}$$

$$t = t - 4$$

$$t = 3 \text{ and } t = 5$$

$$A(t) = \frac{3}{3}(t-4)^{\frac{1}{3}}$$

$$A(t) = \frac{3}{3}(t-4)$$

5 Peeding up: (3,4) and (5,00) 5 lowing dam: (0,3) and (4,5)

For each table, selected values of x and f(x) are given. Assume that f'(x) and f''(x) do not change signs. Answer the questions for each table.

3.

х	f(x)	
4	-5 •	2
5	-8	7 -3
6	-12	2-4
7	-17	Z-5

a. Is f(x) increasing or decreasing?

Decreosing

b. Is f(x) concave up or concave down?

Concave Down

4.

х	f(x)	
-3	-2	
-2	3	[]
-1	7	>4
0	10	23

a. Is f(x) increasing or decreasing?

Increasing

b. Is f(x) concave up or concave down?

Concave Down

5.

x	f(x)	
2	3	
3	0	כר
4	-2	-2
5	-3	>-1

a. Is f(x) increasing or decreasing?

Decreasing

b. Is f(x) concave up or concave down?

Concave Up

6. Given the function $g(x) = -x^4 + 2x^2 - 1$, find the interval(s) when g is concave up and increasing at the same time.

$$3'(x) = -4x^3 + 4x$$

 $-4x(x^2 - 1) = 0$
 $x = 0, x = -1, x = 1$
 $x = 0, x = -1, x = 1$

answer: $\left(0, \frac{\sqrt{3}}{3}\right)$

 $9^{n}(x) = -12x^{2} + 4 = 0$ $-12x^{2} = -4$ $x^{2} = \frac{1}{3}$

(০, √৴ঽৢ)

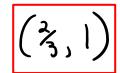
7. Given the function $h(x) = x^3 - 2x^2 + x$, find the interval(s) when h is concave up and decreasing at the same time.

$$h'(x) = 3x^{2} - 4x + 1$$

$$(3x - 1)(x - 1) = 0$$

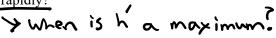
$$x = \frac{1}{3} \quad x = 1$$

$$\frac{x}{h'} + \frac{1}{2} \frac{1}{3} \frac{1$$



5.9 Connecting f, f', and f''

8. Calculator active problem. Let h be the function given by $h(t) = 70 - 15\cos\left(\frac{\pi t}{3}\right) + 5\sin\left(\frac{\pi t}{4}\right)$ for $0 \le t \le 5$. At what value of t is h increasing most rapidly?



(A) 0.266

((B)	1.343

- (C) 2.851
- (D) 4.439
- (E) 5.000

9.

х	-5	-4	-2	0	3
f'(x)	-8	-10	-7	-4	-6

Calculator active problem. Let f be a polynomial function with values of f'(x) at selected values of x given in the table above. Which of the following must be true for -5 < x < 3?

- (A) The graph of f has at least two points of inflection.
- (B) The graph of f is concave down.
- (C) f is decreasing.
- (D) f has at least two relative extrema.
- (E) f has no critical points.
- 10. In the xy-plane, the graph of the twice-differentiable function y = f(x) is concave down on the open interval (1, 3) and is tangent to the line y = 4x + 3 at x = 2. Which of the following statements must be true about the derivative of f?
 - (A) f'(x) is constant on the interval (2, 2.1).
 - (B) f'(x) > 0 on the interval (2, 2.1).
 - (C) f'(x) < 0 on the interval (2, 2.1).
 - (D) $f'(x) \ge 4$ on the interval (2, 2.1).
 - (E) $f'(x) \le 4$ on the interval (2, 2.1).

