State whether the function is continuous at the given \boldsymbol{x} values. Justify your answers!

1. $f(x)=\left\{\begin{array}{cc}e^{x}, & x \leq \ln 3 \\ 3^{x}, & \ln 3<x<2 \\ x^{2}+3 x-1, & x \geq 2\end{array} \quad\right.$ Continuous at $x=\ln 3 ? \quad$ Continuous at $x=2$?
2. $g(x)=\left\{\begin{array}{lc}\sin (2 x), & x<-\pi \\ \cos \left(\frac{x}{2}\right), & -\pi \leq x \leq \frac{\pi}{2} \\ \sin (x), & x>\frac{\pi}{2}\end{array} \quad\right.$ Continuous at $x=-\pi ? \quad$ Continuous at $x=\frac{\pi}{2}$?

For each function identify the type of each discontinuities and where they are is located.
3. $h(x)=\left\{\begin{array}{cc}\ln (e x), & x<1 \\ 5, & x=1 \\ 3 x-1, & 1<x \leq 3 \\ x^{2}+2 & x>3\end{array}\right.$
4. $f(x)=\left\{\begin{array}{cc}3^{x}, & x<-1 \\ 4, & x=-1 \\ x+\frac{4}{3}, & -1<x \leq 1 \\ x^{2}-2 & x>1\end{array}\right.$

For each function find the value \boldsymbol{k} that makes the function continuous.
5. $g(x)= \begin{cases}8-2 x^{2}, & x \leq-1 \\ 5 x+k, & x>-1\end{cases}$
6. $h(x)=\left\{\begin{array}{cc}(k+x)(k-3), & x \leq 4 \\ k-2 x, & x>4\end{array}\right.$

