1.11 Defining Continuity at a Point

		0			
Calc	culus			Name:	
Sta	ate wheth	er the function	is continuous at	t the given x values. Justify your	answers!
		$(e^x,$	$x \le \ln 3$		
1.	f(x) =	$\begin{cases} 3^x, \end{cases}$	$\ln 3 < x < 2$	Continuous at $x = \ln 3$?	Continuous at $x = 2$?
		$(x^2+3x-1,$	$x \ge 2$		

2.
$$g(x) = \begin{cases} \sin(2x), & x < -\pi \\ \cos\left(\frac{x}{2}\right), & -\pi \le x \le \frac{\pi}{2} \\ \sin(x), & x > \frac{\pi}{2} \end{cases}$$
 Continuous at $x = -\pi$? Continuous at $x = \frac{\pi}{2}$?

For each function identify the type of each discontinuities and where they are is located.							
3. $h(x) = \begin{cases} \ln(ex), \\ 5, \\ 3x - 1, \\ x^2 + 2 \end{cases}$	$x < 1$ $x = 1$ $1 < x \le 3$ $x > 3$	4. $f(x) = \begin{cases} 3^{x}, & x < -1 \\ 4, & x = -1 \\ x + \frac{4}{3}, & -1 < x \le 1 \\ x^{2} - 2, & x > 1 \end{cases}$					
For each function find the value k that makes the function continuous.							
(0, 2, 2)	1	$((l_1 + \alpha))(l_2 - 2) \alpha \neq A$					
5. $g(x) = \begin{cases} 8 - 2x^2, \\ 5x + k, \end{cases}$	$\begin{array}{l} x \leq -1 \\ x > -1 \end{array}$	6. $h(x) = \begin{cases} (k+x)(k-3), & x \le 4\\ k-2x, & x > 4 \end{cases}$					
5. $g(x) = \begin{cases} 8 - 2x^2, \\ 5x + k, \end{cases}$	$\begin{array}{c} x \leq -1 \\ x > -1 \end{array}$	6. $h(x) = \begin{cases} (k+x)(k-3), & x \le 4 \\ k-2x, & x > 4 \end{cases}$					
5. $g(x) = \begin{cases} 8 - 2x^2, \\ 5x + k, \end{cases}$	$x \leq -1$ $x > -1$ $z = -1$ $z = -1$ $z = -1$	6. $h(x) = \begin{cases} (k + x)(k - 3), & x \le 4\\ k - 2x, & x > 4 \end{cases}$					

Answers to 1.11 CA #2