1.2 Defining Limits

Limits

As x approaches $_ _ \$, $f(x)$ approaches $_ _ _ _ _.

\[
\lim_{{x \to 2}} f(x) = \quad f(2) =
\]

Use the following graph to evaluate each problem.

1. $\lim_{{x \to 1}} f(x) = \quad 2. \ f(-3) =

3. $\lim_{{x \to 2}} f(x) = \quad 4. \ f(2) =

5. $f(1) = \quad 6. \ f(-2) =

7. $\lim_{{x \to 0}} f(x) = \quad 8. \ \lim_{{x \to -3}} f(x) =

9. Give an interpretation of the statement $\lim_{{x \to 7}} f(x) = 10$

A limit does NOT tell us the value of $f(x)$. It just tells us what the function approaches!

True or false? $f(1) = \lim_{{x \to 1}} f(x)$ in all cases.

True or false? $f(1) \neq \lim_{{x \to 1}} f(x)$ in all cases.
1.2 Defining Limits

Calculus

Give an interpretation of each statement.

1. \(\lim_{x \to 1} f(x) = 9 \)
2. \(\lim_{x \to -2} f(x) = 3 \)
3. \(\lim_{x \to 4} f(x) = -8 \)

Use the following graph to evaluate each problem.

4. \(f(-2) = \)
5. \(\lim_{x \to 1} f(x) = \)
6. \(\lim_{x \to -2} f(x) = \)
7. \(\lim_{x \to 0} f(x) = \)
8. \(f(4) = \)
9. \(\lim_{x \to 4} f(x) = \)
10. \(\lim_{x \to -4} f(x) = \)
11. \(f(1) = \)

Use the following graph to evaluate each problem.

12. \(\lim_{x \to -1} f(x) = \)
13. \(\lim_{x \to 3} f(x) = \)
14. \(f(2) = \)
15. \(\lim_{x \to -2} f(x) = \)
16. \(\lim_{x \to 1} f(x) = \)
17. \(f(3) = \)
18. \(f(-1) = \)
19. \(\lim_{x \to 2} f(x) = \)

Use the following graph to evaluate each problem.

20. \(\lim_{x \to 2} f(x) = \)
21. \(f(1) = \)
22. \(\lim_{x \to 3} f(x) = \)
23. \(\lim_{x \to -2} f(x) = \)
24. \(\lim_{x \to 1} f(x) = \)
25. \(f(-2) = \)
26. \(\lim_{x \to -3} f(x) = \)
27. \(f(3) = \)
Use the following graph to evaluate each problem.

<table>
<thead>
<tr>
<th>x→2 f(x)</th>
<th>x→1 f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td></td>
</tr>
</tbody>
</table>

28. \(\lim_{x \to -2} f(x) = \)

29. \(\lim_{x \to 1} f(x) = \)

30. \(\lim_{x \to 2} f(x) = \)

31. \(f(-2) = \)

32. \(f(1) = \)

33. \(\lim_{x \to 0} f(x) = \)

34. \(\lim_{x \to -4} f(x) = \)

35. \(f(2) = \)

1.2 Defining Limits

36. Let \(f \) be a function that is defined for all real numbers \(x \). Of the following, which is the best interpretation of the statement \(\lim_{x \to 4} f(x) = 8 \).

(A) The value of the function \(f \) at \(x = 4 \) is 8.

(B) The value of the function \(f \) at \(x = 8 \) is 4.

(C) As \(x \) approaches 4, the values of \(f(x) \) approach 8.

(D) As \(x \) approaches 8, the values of \(f(x) \) approach 4.

37. Let \(f \) be a function that is defined for all real numbers \(x \). Of the following, which is the best interpretation of the statement \(\lim_{x \to -1} f(x) = 2 \).

(A) As \(x \) approaches 2, the values of \(f(x) \) approach \(-1\)

(B) The value of the function \(f \) at \(x = -1 \) is 2.

(C) The value of the function \(f \) at \(x = 2 \) is \(-1\).

(D) As \(x \) approaches \(-1\), the values of \(f(x) \) approach 2.