Recall:

A function's inverse is found by swapping the input (x) and output (y) values!

Confusing	Reciprocal		Inverse
Notation:	$\boldsymbol{x}^{-\mathbf{1}}=$	or	$\boldsymbol{f}^{\mathbf{- 1}}(\boldsymbol{x})$ means

Three ways to say the same thing:

1. $g(x)$ is the inverse of $f(x)$
2. $g(x)=f^{-1}(x)$
3. $f(g(x))=x$ and $g(f(x))=x$

Derivative of an Inverse Function:

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=
$$

The table below gives values of the differentiable functions f, g, and f^{\prime} at selected values of x. Let $g(x)=f^{-1}(x)$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
1	3	-3
2	1	-2
3	-5	-5
4	0	-6

1. What is the value of $g^{\prime}(1)$?
2. Write an equation for the line tangent to f^{-1} at $x=1$.
3. Let g be a differentiable function such that $g(12)=4, g(3)=6, g^{\prime}(12)=-5$, and $g^{\prime}(3)=-2$. The function h is differentiable and $h(x)=g^{-1}(x)$ for all x. What is the value of $h^{\prime}(6)$?
4. If $f(x)=3 x^{3}+1$ and g is the inverse function of f, what is the value of $g^{\prime}(25)$?

For each problem, let f and g be differentiable functions where $g(x)=f^{-1}(x)$ for all x.

1. $f(3)=-2, f(-2)=4$,
$f^{\prime}(3)=5$, and $f^{\prime}(-2)=1$.
Find $g^{\prime}(-2)$.
2. $f(1)=5, f(2)=4$,
$f^{\prime}(1)=-2$, and $f^{\prime}(2)=-4$.
Find $g^{\prime}(5)$.
3. $f(-1)=4, f(2)=-3$, $f^{\prime}(-1)=-5$, and $f^{\prime}(2)=7$.
Find $g^{\prime}(-3)$.

The table below gives values of the differentiable function \boldsymbol{g} and its derivative \boldsymbol{g}^{\prime} at selected values of \boldsymbol{x}.
Let $h(x)=g^{-1}(x)$.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$	$\boldsymbol{g}^{\prime}(\boldsymbol{x})$
-1	-2	-4
-2	-5	-2
-3	-4	-1
-4	-3	-5
-5	-1	-3

5. Find $h^{\prime}(-1)$

Find the equation of the tangent line to g^{-1} at $x=-1$.
6. $h^{\prime}(-3)$

Find the equation of the tangent line to g^{-1} at $x=-3$.
7. $h^{\prime}(-5)$

Find the equation of the tangent line to g^{-1} at $x=-5$.

\boldsymbol{f} and \boldsymbol{g} are differentiable functions. Use the table to answer the problems below. \boldsymbol{f} and \boldsymbol{g} are NOT inverses! x $f(x)$ $f^{\prime}(x)$ $g(x)$ $g^{\prime}(x)$ 1 5 -5 4 5 2 1 -6 3 3 3 6 4 1 6 4 2 9 6 1 5 3 1 2 2 6 4 2 $10 . \frac{d}{d} g^{-1}(3)$
8. $g^{-1}(4)$

8. $g^{-1}(4)$
9. $f^{-1}(5)$
10. $\frac{d}{d x} g^{-1}(3)$
11. $\frac{d}{d x} f^{-1}(1)$
12. Find the line tangent to the graph of $f^{-1}(x)$ at $x=2$.

For each function $\boldsymbol{g}(\boldsymbol{x})$, its inverse $\boldsymbol{g}^{\mathbf{- 1}}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$. Evaluate the given derivative.
13. $g(x)=\cos (x)+3 x^{2}$
$g\left(\frac{\pi}{2}\right)=\frac{3 \pi}{4}$. Find $f^{\prime}\left(\frac{3 \pi}{4}\right)$
14. $g(x)=2 x^{3}-x^{2}-5 x$
$g(-2)=-10$. Find $f^{\prime}(-10)$
15. $g(x)=\sqrt{8-2 x}$. Find $f^{\prime}(4)$?
16. $g(x)=x^{3}-7$. Find $f^{\prime}(20)$?
17. $g(x)=\frac{5}{x+3}$. Find $f^{\prime}\left(\frac{1}{2}\right)$?

3.3 Differentiating Inverse Functions

18. The functions f and g are differentiable for all real numbers and g is strictly increasing. The table below gives values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.
(b) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.
19. A function h satisfies $h(3)=5$ and $h^{\prime}(3)=7$. Which of the following statements about the inverse of h must be true?
(A) $\left(h^{-1}\right)^{\prime}(5)=3$
(B) $\left(h^{-1}\right)^{\prime}(7)=3$
(C) $\left(h^{-1}\right)^{\prime}(5)=7$
(D) $\left(h^{-1}\right)^{\prime}(5)=\frac{1}{7}$
(E) $\left(h^{-1}\right)^{\prime}(7)=\frac{1}{5}$

