Calculus

Write your questions and thoughts here!

Recall:

A function's inverse is found by swapping the input (x) and output (y) values!

Confusing	<u>Reciprocal</u>		Inverse	
Notation:	$x^{-1} =$	or	$f^{-1}(x)$ means	

Three ways to say the same thing:

- 1. g(x) is the inverse of f(x)2. $g(x) = f^{-1}(x)$
- 3. f(g(x)) = x and g(f(x)) = x

Derivative of an Inverse Function:

$$\frac{d}{dx}[f^{-1}(x)] =$$

The table below gives values of the differentiable functions f, g, and f' at selected values of x. Let $g(x) = f^{-1}(x)$.

x	f(x)	f'(x)
1	3	-3
2	1	-2
3	-5	-5
4	0	-6

1. What is the value of $g'(1)$?	2. Write an equation for the line tangent to f^{-1} at $x = 1$.
3. Let g be a differentiable function such that $g(12) = 4$, $g(3) = 6$, $g'(12) = -5$, and $g'(3) = -2$. The function h is differentiat $h(x) = g^{-1}(x)$ for all x. What is the value $h'(6)$?	ble and inverse function of f , what is the value of $g'(25)$?

3.3 Differentiating Inverse Functions

Calculus

For each problem, let f and g be differentiable functions where $g(x) = f^{-1}(x)$ for all x.

1. $f(3) = -2, f(-2) = 4,$	2. $f(1) = 5, f(2) = 4,$
f'(3) = 5, and $f'(-2) = 1$.	f'(1) = -2, and $f'(2) = -4$.
Find $g'(-2)$.	Find $g'(5)$.
3. $f(6) = -2, f(-3) = 7,$	4. $f(-1) = 4, f(2) = -3,$
f'(6) = -1, and $f'(-3) = 3$.	f'(-1) = -5, and $f'(2) = 7$.
Find $g'(7)$.	Find $g'(-3)$.

The table below gives values of the differentiable function g and its derivative g' at selected values of x. Let $h(x) = g^{-1}(x)$.

				_
	x	g(x)	g'(x)	
	-1	-2	-4	
	-2	-5	-2	
	-3	-4	-1	
	-4	-3	-5	
	-5	-1	-3	
5. Find <i>h</i> ′(−1)	6. h'(-3)			7. <i>h</i> ′(−5)
Find the equation of the tangent line to g^{-1} at $x = -1$.		equation of the function of the function $x = -3$		Find the equation of the tangent line to g^{-1} at $x = -5$.

Practice

OT inverses!	f(x)	f'(x)	g(x)	g'(x)
1	5	-5	4	5
2	1	-6	3	3
3	6	4	1	6
4	2	9	6	1
5	3	1	1	2
6	4	2	2	4
f ⁻¹ (1)		12 Fin	10. $\frac{d}{dx}g^{-1}$	
			= 2.	
u function $g(x)$,	its inverse $g^{-1}(x)$	= f(x). Evaluate t	he given derivative. $x) = 2x^3 - x^2 - 5x$	
$\left(\frac{\pi}{2}\right) = \frac{3\pi}{4}$. Find f'	$\left(\frac{3\pi}{4}\right)$	g(-	-2) = -10. Find $f'(-2) = -10$.	-10)
$(x) = \sqrt{8 - 2x}$. Find	nd $f'(4)$? 16. g	$(x) = x^3 - 7$. Find	f'(20)? 17. $g(x)$	$=\frac{5}{x+3}$. Find f'

3.3 Differentiating Inverse Functions

18. The functions f and g are differentiable for all real numbers and g is strictly increasing. The table below gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

Test Prep

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

(a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.

(b) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

19. A function h satisfies h(3) = 5 and h'(3) = 7. Which of the following statements about the inverse of h must be true?

(A)
$$(h^{-1})'(5) = 3$$
 (B) $(h^{-1})'(7) = 3$ (C) $(h^{-1})'(5) = 7$
(D) $(h^{-1})'(5) = \frac{1}{7}$ (E) $(h^{-1})'(7) = \frac{1}{5}$