3.3 Differentiating Inverse Functions

Calculus

Solutions

Practice

For each problem, let f and g be differentiable functions where $g(x) = f^{-1}(x)$ for all x.

1. f(3) = -2, f(-2) = 4, f'(3) = 5, and f'(-2) = 1. Find g'(-2).

$$\frac{1}{5'[5'(-2)]} = \frac{1}{5'(5)} = \frac{1}{5}$$

2. f(1) = 5, f(2) = 4, f'(1) = -2, and f'(2) = -4. Find g'(5).

$$\frac{1}{5'\left[5^{-1}\left(5\right)\right]} = \frac{1}{5'\left(1\right)} = -\frac{1}{2}$$

3. f(6) = -2, f(-3) = 7, f'(6) = -1, and f'(-3) = 3. Find g'(7).

$$\frac{1}{5'[5^{-1}(7)]} = \frac{1}{5'(-3)} = \frac{1}{3}$$

4. f(-1) = 4, f(2) = -3, f'(-1) = -5, and f'(2) = 7. Find g'(-3).

$$\frac{1}{5'[5'(-3)]} = \frac{1}{5'(2)} = \frac{1}{7}$$

The table below gives values of the differentiable function g and its derivative g' at selected values of x. Let $h(x) = g^{-1}(x)$.

x	g(x)	g'(x)
-1	-2	-4
-2	-5	-2
-3	-4	-1
-4	-3	- 5
-5	-1	-3

5. Find h'(-1)

6. h'(-3)

$$\frac{1}{3'(5'(-3))} = \frac{1}{3'(-4)} = -\frac{1}{5}$$

7. h'(-5)

$$\frac{1}{5'(5'(-5))} = \frac{1}{5'(-2)} = \frac{1}{2}$$

Find the equation of the tangent line to g^{-1} at x = -1.

Find the equation of the tangent line to g^{-1} at x = -3.

Find the equation of the tangent line to g^{-1} at x = -5.

f and g are differentiable functions. Use the table to answer the problems below. f and g are NOT inverses!						
x	f(x)	f'(x)	g(x)	g'(x)		
1	5	-5	4	5		
2	1	-6	3	3		
3	6	4	1	6		
4	2	9	6	1		
5	3	1	1	2		
6	4	2	2	4		

8.
$$g^{-1}(4)$$

9.
$$f^{-1}(5)$$

10.
$$\frac{d}{dx}g^{-1}(3)$$

$$\frac{1}{9'(9'(3))} = \frac{1}{9'(2)} = \frac{1}{3}$$

11.
$$\frac{d}{dx}f^{-1}(1)$$

12. Find the line tangent to the graph of
$$f^{-1}(x)$$
 at

$$\frac{1}{5'(5^{-1}(2))} = \frac{1}{5'(4)} = \frac{1}{9}$$

For each function g(x), its inverse $g^{-1}(x) = f(x)$. Evaluate the given derivative.

13.
$$g(x) = \cos(x) + 3x^2$$

$$g\left(\frac{\pi}{2}\right) = \frac{3\pi}{4}. \text{ Find } f'\left(\frac{3\pi}{4}\right)$$

$$\Im(x) = -5 + 6x$$

$$\frac{1}{\Im'(\Im'(\Im Z))} = \frac{1}{\Im'(\Im Z)} = \frac{1}{3\pi-1}$$

14.
$$g(x) = 2x^3 - x^2 - 5x$$

 $g(-2) = -10$. Find $f'(-10)$

$$3(x)=6x^2-2x-5$$

 $3(-2)=24+4-5$
= 23

$$f'(-10) = \frac{1}{g'(5'(-10))} = \frac{1}{5(-2)} = \frac{1}{23}$$

15.
$$g(x) = \sqrt{8 - 2x}$$
. Find $f'(4)$?

$$g'(x) = \frac{-2}{2\sqrt{8-2x}} = \frac{-1}{\sqrt{8-2x}}$$

$$4 = \sqrt{8-2x}$$

$$16 = 8^{-2x}$$

$$-4 = x \rightarrow g'(4) = -4$$

$$\frac{1}{3'(5^{-1}(20))} = \frac{1}{3'(3)}$$

$$\frac{1}{3^{-1}(4)^{-1}} = \frac{1}{3'(x)} = \frac{1}{3'(x)}$$

16.
$$g(x) = x^3 - 7$$
. Find $f'(20)$?

$$\frac{g'(x) = \sqrt{8 - 2x}}{g'(x)} = \frac{-1}{\sqrt{8 - 2x}} = \frac{-1}{\sqrt{8 - 2x}} = \frac{-1}{\sqrt{8 - 2x}}$$

$$\frac{16 = 8 - 2x}{16 = 8 - 2x}$$

$$\frac{1}{9'(9'(4))} = \frac{1}{9'(-4)} = \frac{1}{\sqrt{16}}$$

$$\frac{1}{9'(9'(4))} = \frac{1}{9'(-4)} = \frac{1}{\sqrt{16}}$$

$$\frac{1}{9'(3)} = \frac{1}{27}$$

$$\frac{1}{9'(3)} = \frac{1}{27}$$

17.
$$g(x) = \frac{5}{x+3}$$
. Find $f'(\frac{1}{2})$?

$$9(7) = -\frac{5}{100} = -\frac{1}{20}$$

3.3 Differentiating Inverse Functions

18. The functions f and g are differentiable for all real numbers and g is strictly increasing. The table below gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

(a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.

$$h(1) = f(g(1)) - 6 = f(2) - 6 = 9 - 6 = 3$$

h(3)=f(g(3))-6=f(4)-6=-1-6=-7

According to the IVT, there is a value r such that h(r) = -5 and $1 \le r \le 3$.

(b) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

$$\frac{1}{9(5'(\lambda)} = \frac{1}{9'(1)} = \frac{1}{5}$$

19. A function h satisfies h(3) = 5 and h'(3) = 7. Which of the following statements about the inverse of *h* must be true?

$$h^{-1}(5)=3$$
 $\frac{d}{dx}h^{-1}(5)=\frac{1}{h'(h^{-1}(5))}=\frac{1}{h'(3)}=\frac{1}{7}$

- (A) $(h^{-1})'(5) = 3$
- (B) $(h^{-1})'(7) = 3$
- (C) $(h^{-1})'(5) = 7$

(D)
$$(h^{-1})'(5) = \frac{1}{7}$$

(E)
$$(h^{-1})'(7) = \frac{1}{5}$$