For each problem, let f and g be differentiable functions where $g(x)=f^{-1}(x)$ for all x.

1. $f(3)=-2, f(-2)=4$, $f^{\prime}(3)=5$, and $f^{\prime}(-2)=1$.
Find $g^{\prime}(-2)$.

$$
\frac{1}{s^{\prime}\left(s^{\prime}(-2)\right)}=\frac{1}{s^{\prime}(3)}=\frac{1}{5}
$$

3. $f(6)=-2, f(-3)=7$, $f^{\prime}(6)=-1$, and $f^{\prime}(-3)=3$.
Find $g^{\prime}(7)$.

$$
\frac{1}{f^{\prime}\left[f^{-1}(f)\right]}=\frac{1}{f^{\prime}(-3)}=\frac{1}{3}
$$

2. $f(1)=5, f(2)=4$, $f^{\prime}(1)=-2$, and $f^{\prime}(2)=-4$.
Find $g^{\prime}(5)$.
3. $f(-1)=4, f(2)=-3$,
$f^{\prime}(-1)=-5$, and $f^{\prime}(2)=7$.
Find $g^{\prime}(-3)$.

$$
\frac{1}{f^{\prime}\left[f^{-1}(-3)\right.}=\frac{1}{f^{\prime}(2)}=\frac{1}{7}
$$

The table below gives values of the differentiable function \boldsymbol{g} and its derivative \boldsymbol{g}^{\prime} at selected values of \boldsymbol{x}. Let $h(x)=g^{-1}(x)$.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$	$\boldsymbol{g}^{\prime}(\boldsymbol{x})$
-1	-2	-4
-2	-5	-2
-3	-4	-1
-4	-3	-5
-5	-1	-3

5. Find $h^{\prime}(-1)$

$$
\frac{1}{g^{\prime}\left(g^{\prime \prime}(-1)\right)^{\prime}}=\frac{1}{g^{\prime}(-5)}=-\frac{1}{3}
$$

Find the equation of the tangent line to g^{-1} at $x=-1$.

$$
y+5=-\frac{1}{3}(x+1)
$$

6. $h^{\prime}(-3)$

$$
\frac{1}{g^{\prime}\left(5^{1}(-3)\right)}=\frac{1}{g^{\prime}(-4)}=-\frac{1}{5}
$$

Find the equation of the tangent line to g^{-1} at $x=-3$.

$$
y+4=-\frac{1}{5}(x+3)
$$

$\frac{1}{g^{\prime}\left(g^{\prime}(-5)\right.}=\frac{1}{g^{\prime}(-2)}=\frac{-1}{2}$

Find the equation of the tangent line to g^{-1} at $x=-5$.

$$
y+2=-\frac{1}{2}(x+5)
$$

f and g are differentiable functions. Use the table to answer the problems below. f and g are NOT inverses!

11. $\frac{d}{d x} f^{-1}(1)$

$$
\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(2)}=-1 / 6
$$

12. Find the line tangent to the graph of $f^{-1}(x)$ at

$$
\begin{aligned}
& \frac{x=2}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}(4)}=\frac{1}{9} \\
& y-4=\frac{1}{9}(x-2)
\end{aligned}
$$

For each function $g(x)$, its inverse $g^{-1}(x)=f(x)$. Evaluate the given derivative.
13. $g(x)=\cos (x)+3 x^{2}$
$g\left(\frac{\pi}{2}\right)=\frac{3 \pi}{4}$. Find $f^{\prime}\left(\frac{3 \pi}{4}\right)$
$g^{\prime}(x)=-\sin x+6 x$

$$
g^{\prime}\left(\frac{\pi}{2}\right)=-1+3 \pi
$$

$$
\frac{1}{\rho^{\prime}\left(g^{-1}\left(\frac{\pi}{4}\right)\right)}=\frac{1}{g^{\prime}\left(\frac{\pi}{2}\right)}=\frac{1}{3 \pi-1}
$$

14. $g(x)=2 x^{3}-x^{2}-5 x$
$g(-2)=-10$. Find $f^{\prime}(-10)$

$$
g^{\prime}(x)=6 x^{2}-2 x-5
$$

$$
g^{\prime}(-2)=24+4-5
$$

$$
=23
$$

$$
f^{\prime}(-10)=\frac{1}{g^{\prime}\left(s^{\prime}(-10)\right)}=\frac{1}{g^{\prime}(-2)}=\frac{1}{23}
$$

15. $g(x)=\sqrt{8-2 x}$. Find $f^{\prime}(4)$? 16. $g(x)=x^{3}-7$. Find $f^{\prime}(20)$?

$$
\begin{aligned}
& g^{\prime}(x)=\frac{-2}{2 \sqrt{8-2 x}}=\frac{-1}{\sqrt{8-2 x}} \\
& 4=\sqrt{8-2 x} \\
& 16=8-2 x \\
& -4=x \rightarrow g^{-1}(4)=-4 \\
& \frac{1}{g^{\prime}\left(g^{-1}(4)\right)}=\frac{1}{g^{\prime}(-4)}=\frac{1}{-\frac{1}{\sqrt{16}}}
\end{aligned}
$$

-4

$$
20=x^{3}-7
$$

$$
27=x^{3}
$$

$$
\begin{aligned}
& 27=x \\
& 3=x
\end{aligned} \rightarrow 9^{-1}(20)=3
$$

$$
\frac{1}{g^{\prime}\left(g^{-1}(20)\right)}=\frac{1}{g^{\prime}(3)}
$$

$g^{\prime}(x)=3 x^{2}$
$g^{\prime}(3)=27$

$$
\begin{aligned}
& \text { 17. } g(x)=\frac{5}{x+3} \text {. Find } f^{\prime}\left(\frac{1}{2}\right) \text { ? } \\
& \frac{1}{2}=\frac{5}{x+3} \\
& x+3=10 \\
& x=7 \rightarrow g^{-1}\left(\frac{1}{2}\right)=7 \\
& \frac{1}{g^{\prime}\left(g^{-1}\left(\frac{1}{2}\right)\right)}=\frac{1}{g^{\prime}(7)}>\frac{1}{-\frac{1}{20}} \\
& g^{\prime}(x)=-\frac{5}{(x+3)^{2}} \quad 1 \\
& g^{\prime}(7)=-\frac{5}{100}=-\frac{1}{20}-20
\end{aligned}
$$

3.3 Differentiating Inverse Functions
18. The functions f and g are differentiable for all real numbers and g is strictly increasing. The table below gives values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.

$$
\begin{aligned}
& h(1)=f(g(1))-6=f(2)-6=9-6=3 \\
& h(3)=f(g(3))-6=f(4)-6=-1-6=-7
\end{aligned}
$$

According to the IVT, there is a value r such that $h(r)=-5$ and $1 \leq r \leq 3$.
(b) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.

$$
\frac{1}{g^{\prime}\left(5^{-1}(2)\right.}=\frac{1}{g^{\prime}(1)}=\frac{1}{5}
$$

$$
y-1=\frac{1}{5}(x-2)
$$

19. A function h satisfies $h(3)=5$ and $h^{\prime}(3)=7$. Which of the following statements about the inverse of h must be true?

$$
h^{-1}(5)=3 \quad \frac{d}{d x} h^{-1}(5)=\frac{1}{h^{\prime}\left(h^{-1}(5)\right)}=\frac{1}{h^{\prime}(3)}=\frac{1}{7}
$$

(A) $\left(h^{-1}\right)^{\prime}(5)=3$
(B) $\left(h^{-1}\right)^{\prime}(7)=3$
(C) $\left(h^{-1}\right)^{\prime}(5)=7$
(D) $\left(h^{-1}\right)^{\prime}(5)=\frac{1}{7}$
(E) $\left(h^{-1}\right)^{\prime}(7)=\frac{1}{5}$

