1. A particle moves along a line so that its position at any time $t \geq 0$ is given by the function

$$
s(t)=t^{3}-8 t^{2}+20 t-16
$$

where s is measured in meters and t is measured in seconds.
a. Find the instantaneous velocity at any time t.
b. Find the acceleration of the particle at any time t.
d. What is the displacement of the particle for the first 3 seconds?
2. A rock thrown vertically upward from a 7 meter alien on the moon at a velocity of 48 meters per second reaches a height of $s(t)=7+48 t-0.8 t^{2}$ meters in t seconds.
a. Find the rock's velocity and acceleration as functions of time.
b. How long did it take the rock to reach its highest point?
3. A particle P moves on the number line. The graph $s=f(t)$ shows the position of P as a function of time t.
a. When is P moving to the left?
b. When is P moving to the right?
c. When is P standing still?

4. The figure shows the velocity $v=\frac{d s}{d t}=f(t)$ of a body moving along a coordinate line in meters per second.
a. When does the body reverse direction?
b. When is the body moving at a constant speed?
c. What is the body's maximum speed?

d. At what time interval(s) is the body slowing down?

Answers to 4.2 CA \#1

| 1 a.
 $v(t)=3 t^{2}-16 t+20$ | $1 \mathrm{~b} . a(t)=6 t-16$ | $1 \mathrm{c} . t=\frac{10}{3}$ and 2 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2a.
 $v(t)=48-1.6 t$
 $a(t)=-1.6$ | 2b. $t=30$ seconds | $3 \mathrm{a} .(0,1)$ and $(5,8)$ | $3 \mathrm{~b} .(1,3)$ and $(8,9)$ | $3 \mathrm{c} .(3,5)$ |
| 4a. $t=4$ and 8 | $4 \mathrm{~b} .(6,7)$ | 4 c. 3 meters per second | $4 \mathrm{~d} .(2,4)$ and $(7,8)$ | |

