Consider the curves in the $\boldsymbol{x y}$-plane for each problem. At the point given point, is the curve increasing or decreasing? Justify your answer.

$$
\text { 1. } \begin{aligned}
x^{2}-\frac{y^{2}}{2} & =-1 \text { at }(-1,2) \\
2 x-y & \frac{d y}{d x}=0 \\
2(-1)-(2) \frac{d y}{d x} & =0 \\
& -2 \frac{d y}{d x}=2 \\
\frac{d y}{d x}= & -1
\end{aligned}
$$

Decreasing because $\frac{d y}{d x}(-1,2)<0$

$$
\text { 2. } \begin{aligned}
& x^{\frac{2}{3}}+y^{\frac{2}{3}}=5 \text { at }(1,-8) \\
& \frac{2}{3} x^{-\frac{1}{3}}+\frac{2}{3} y^{-\frac{1}{3}} \frac{d y}{d x}=0 \\
& \frac{2}{3 \sqrt{1}}+\frac{2}{3 \sqrt[3]{-8}} \frac{d y}{d x}=0 \\
& \frac{2}{-6} \frac{d y}{d x}=-\frac{2}{3} \\
& \frac{d y}{d x}=2
\end{aligned}
$$

Increasing because $\frac{d y}{d x(1,-8)}>0$
3.

$$
\begin{array}{r}
x^{2}-2 x y+y^{2}=1 \text { att }(-1,-2) \\
2 x-2\left[(1) y+x \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=0 \\
2(-1)-2\left[(-2)+(-1) \frac{d y}{d x}\right]+2(-2) \frac{d y}{d x}=0 \\
-2+4+2 \frac{d y}{d x}-4 \frac{d y}{d x}=0 \\
-2 \frac{d y}{d x}=-2 \\
\frac{d y}{d x}=1
\end{array}
$$

Consider the given differential equation $\frac{d y}{d x}$, where $y=f(x)$ is a particular solution with a given point. For each problem, determine if f has a relative minimum, a relative maximum, or neither at the given point. Justify your answer.

$$
\begin{aligned}
& \text { 4. } \frac{d y}{d x}=y \sin x \text { where } f(2 \pi)=1 \\
& 1 \cdot \sin (2 k)=0 \quad \\
& \begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d y}{d x} \sin x+y \cos x \\
& d x=0 \quad l(y \sin x)(\sin x)+y \cos x \\
& 1 \cdot \sin ^{2}(2 x)+1 \cdot \cos (2 n) \\
& 0+1 \\
& 1
\end{aligned}
\end{aligned}
$$

Relative minimum $b / c d y=0$ and $\frac{d^{2} y_{x^{2}}>0 \text {. }}{2}>0$.
5. $\frac{d y}{d x}=\frac{x}{y}+\ln x$ where $f(1)=-2$

$$
\begin{aligned}
& \frac{1}{-2}+\ln (1) \\
& -\frac{1}{2}+0
\end{aligned}
$$

Neither. $\frac{d y}{d x} \neq 0$.

$$
\begin{gathered}
\text { 6. } \frac{d y}{d x}=y x^{2} \text { where } f(0)=-5 \\
(-5)(0)=0 \\
\frac{d y}{d x}=0 \quad \sqrt{2} \\
\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x} x^{2}+y(2 x) \\
\left(y x^{2}\right) x^{2}+2 x y \\
0+0
\end{gathered}
$$

Neither. $\frac{d^{2} y}{d x}=0$ therefore f is not concave up or down.
5.12 Behaviors of Implicit Relations
7. Consider the curve defined by $x^{2}-y^{2}-5 x y=25$.
a. Show that $\frac{d y}{d x}=\frac{2 x-5 y}{5 x+2 y}$

$$
\begin{aligned}
& 2 x-2 y \frac{d y}{d x}-5 y-5 x \frac{d y}{d x}=0 \\
& -2 y \frac{d y}{d x}-5 x \frac{d y}{d x}=5 y-2 x \\
& \frac{d y}{d x}(-2 y-5 x)=5 y-2 x
\end{aligned}
$$

$$
\text { multiply by } \frac{-1}{-1} \quad \frac{d y}{d x}=\frac{5 y-2 x}{-2 y-5 x}=\frac{2 x-5 y}{5 x+2 y}
$$

b. Find the slope of the line tangent to the curve at each point on the curve when $x=2$.

$$
\begin{array}{lll}
(2)^{2}-y^{2}-5(2) y=25 & \frac{d y}{d x}(2,-3)=\frac{2(2)-5(-3)}{5(2)+2(-3)} \\
4-y^{2}-10 y=25 & \frac{4+15}{10-6}=\frac{19}{4} \\
-y^{2}-10 y-21=0 & & \\
-\left(y^{2}+10 y+21\right)=0 & \frac{d y}{d x(2,-7)}=\frac{2(2)-5(-7)}{5(2)+2(-7)}=\frac{39}{-4} \\
-(y+3)(y+7)=0 & y=-3 \quad y=-7 &
\end{array}
$$

c. Find the positive value of x at which the curve has a vertical tangent line. Show the work that leads to your answer.
Vertical tangent if $\frac{d y}{d x}$ has a denominator $=0$, or $2 y+5 x=0$.

$$
\begin{aligned}
2 y & =-5 x \\
y & =-\frac{5 x}{2}
\end{aligned}
$$

Substitute " y " into original equation

$$
\begin{aligned}
x^{2}-\left(\frac{5 x}{2}\right)^{2}-5 x\left(\frac{5 x}{2}\right) & =25 \\
x^{2}-\frac{25}{4} x^{2}+\frac{25}{2} x^{2} & =25 \\
\frac{4}{4} x^{2}-\frac{25}{4} x^{2}+\frac{50}{4} x^{2} & =25 \\
\frac{29}{4} x^{2} & =25 \\
x^{2} & =\frac{100}{29}
\end{aligned}
$$

d. Let x and y be functions of time t that are related by the equation $x^{2}-y^{2}-5 x y=25$. At time $t=3$, the value of x is 5 , the value of y is 0 , and the value of $\frac{d y}{d t}$ is -2 . Find the value of $\frac{d x}{d t}$ at time $t=3$.

$$
\begin{gathered}
2 x \frac{d x}{d t}-2 y \frac{d y}{d t}-5\left[\frac{d x}{d y} y+x \frac{d y}{d t}\right]=0 \\
2(5) \frac{d x}{d t}-2(0)(-2)-5\left[\frac{d x}{d t}(0)+(5)(-2)\right]=0 \\
10 \frac{d x}{d t}-5(-10)=0 \\
10 \frac{d x}{d t}=-50 \\
\frac{d x}{d t}=-5
\end{gathered}
$$

