Extreme Value Theorem:

If a function f is continuous over the interval $[a, b]$, then f has at least one minimum value and at least one maximum value on $[a, b]$.

Global vs. Local Extrema

or

Absolute vs. Relative Extrema

Find all extreme values. Identify the type and where they occur.
1.

2.

$f(x)$

How do you find a critical point?
1.
2.

Find all critical points
3. $f(x)=\frac{1}{3} x^{3}-9 x+24$

5.2 Critical Points

Calculus
4. $g(x)=\frac{1}{\sqrt{4-x^{2}}}$

Find all extreme values. Identify the type and where they occur. For example, an answer could be written as "absolute max of 3 at $x=1$."

3.

Find the critical points.

4. $f(x)=4 x^{3}-9 x^{2}-12 x+3$	5. $g(t)=\frac{2}{t^{2}-4}$	6. $h(x)=\sqrt[3]{x-2}$
7. $f(x)=(\ln x)^{2}$	$8 . h(x)=2 \sin \left(\frac{x}{2}\right)$ where $-2 \pi \leq x \leq 2 \pi$	9. g(x)=ex-x
5.2 Critical Points		
5		

10. Calculator active problem. The first derivative of the function f is given by $f^{\prime}(x)=\frac{\sin ^{2} x}{x}-\frac{2}{9}$. How many critical values does f have on the open interval $(0,10)$?
A) One
(B) Two
(C) Three
(D) Four
(E) Six
11. If f is a continuous, decreasing function on $[0,10]$ with a critical point at $(4,2)$, which of the following statements must be false?
(A) $f(10)$ is an absolute minimum of f on $[0,10]$.
(B) $f(4)$ is neither a relative maximum nor a relative minimum.
(C) $f^{\prime}(4)$ does not exist
(D) $f^{\prime}(4)=0$
(E) $f^{\prime}(4)<0$
