Last lesson, we learned about the definite integral. $\int_{a}^{b} f(x) d x$ represents the area under the curve of $f(x)$ on the interval $[a, b]$.

Let us say we know the interval starts at a, but we do not know where it stops. That would give us where a is a constant and x is some unknown variable. We can represent that as a new function that looks like this:

$$
F(x)=
$$

1. Let $F(x)=\int_{0}^{x} f(t) d t$. Use the graph of f in the figure to find the values of the table on the interval $0 \leq x \leq 5$.
a) Complete the table.

\boldsymbol{x}	0	1	2	3	4	5
$\boldsymbol{F}(\boldsymbol{x})$						

This is called an \qquad

Fundamental Theorem of Calculus

If a is a constant and f is a continuous function, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=
$$

Derivatives and Integrals are \qquad of each other. They cancel each other out, just like multiplication and division. In example 1 , the graph of f is the derivative of $F(x)$. So $F(x)$ is considered the \qquad of $f(x)$.

Variations of the FTC

If a is a constant, f is a continuous function, and g and h are differentiable then

$$
\begin{gathered}
\frac{d}{d x} \int_{a}^{g(x)} f(t) d t= \\
\frac{d}{d x} \int_{h(x)}^{g(x)} f(t) d t=
\end{gathered}
$$

Find $\boldsymbol{F}^{\prime}(\boldsymbol{x})$.

1. $F(x)=\int_{2}^{x}\left(3 t^{2}+4 t\right) d t |$| 2. $F(x)=\int_{\frac{\pi}{2}}^{x^{3}} \sin (t) d t$ | 3. $F(x)=\int_{1}^{4 x} h(t) d t$ |
| :--- | :--- | :--- |
2. $F(x)=\int_{-x}^{x} 5 t d t$
3. $F(x)=\int_{2 x}^{3 x}\left(t^{2}-t\right) d t$

6.4 Accumulation Functions

Practice

Find $\boldsymbol{F}^{\prime}(\boldsymbol{x})$.

1. $F(x)=\int_{2}^{x} t^{3} d t$	$2 . F(x)=\int_{0}^{x} 5 d t$	3. $F(x)=\int_{-1}^{x}\left(4 t-t^{2}\right) d t$
4. $F(x)=\int_{\pi}^{x} \cos (t) d t$	$5 . F(x)=\int_{1}^{x^{2}} t^{3} d t$	$6 . F(x)=\int_{\pi}^{x^{2}} \sin (t) d t$
7. $F(x)=\int_{\pi}^{\sin x} \frac{1}{t} d t$	$8 . F(x)=\int_{4}^{x^{2}} 3 \sqrt{t} d t$	$9 . F(x)=\int_{0}^{3 x} 2 t d t$
10. $F(x)=\int_{0}^{\tan x} t^{2} d t$	$11 . F(x)=\int_{3}^{x^{2}} \tan (t) d t$	$12 . F(x)=\int_{3}^{g(x)} \sec (t) d t$

13. $F(x)=\int_{1}^{2 x} f(t) d t$
14. $F(x)=\int_{x}^{x+2}(4 t+1) d t$
15. $F(x)=\int_{-x^{2}}^{x}(3 t-1) d t$
16. $F(x)=\int_{-x}^{x} t^{3} d t$

$$
\text { 17. } F(x)=\int_{2 x}^{3 x} t^{2} d t
$$

6.4 Accumulation Functions

18. Let $g(x)=\frac{d}{d x} \int_{0}^{x} \sqrt{t^{2}+9} d t$. What is $g(-4)$?
(A) -5
(B) -3
(C) 3
(D) 4
(E) 5
19.

The graph of a function f on the closed interval [0,6] is shown above. Let $h(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 6$. Find $h^{\prime}(3)$.
(A) -2
(B) 0
(C) 2
(D) Does not exist
20.

The figure above shows the region A, which is bounded by the x - and y-axes, the graph of $f(x)=\frac{1-\cos x}{x}$ for $x>0$, and the vertical line $x=b$. If b increases at a rate of $\frac{\pi}{2}$ units per second, how fast is the area of region A increasing when $b=\frac{\pi}{3}$?

