Draw a slope field for each of the following differential equations. Use each of the coordinate points shown in the graph.

1. $\frac{d y}{d x}=x^{2}+y$
2. $\frac{d y}{d x}=\frac{x}{y^{2}}$

Match the differential equation with its slope field.
3.

(A) $\frac{d y}{d x}=x+y$
(B) $\frac{d y}{d x}=\frac{x}{y}$
(C) $\frac{d y}{d x}=\frac{y}{x}$
(D) $\frac{d y}{d x}=(x-1) y$
(E) $\frac{d y}{d x}=x(y-1)$
4.

(A) $\frac{d y}{d x}=y-x$
(B) $\frac{d y}{d x}=-\frac{x}{y}$
(C) $\frac{d y}{d x}=-\frac{y}{x}$
(D) $\frac{d y}{d x}=y(x-1)$
(E) $\frac{d y}{d x}=x(y-1)$

5．The figure below shows the slope field for the differential equation $\frac{d y}{d x}=x^{2}+y$
Let f be the function that satisfies the given differential equation．Write an equation for the tangent line to the curve $y=f(x)$ through the point $(-1,-2)$ ．

1	
1111	1111111
111－1111	1－1－11
11111111	1111111
11	11，1111
「プ「プーフ	フォソフワ「プ
11111	
117	4
1111111	1
	，
11111	
1ナナイン	サ入⿺ニーイ1
$111 /$	

6．The figure below shows the slope field for the differential equation $\frac{d y}{d x}=\frac{y^{2}}{x}$
Let f be the function that satisfies the given differential equation．Write an equation for the tangent line to the curve $y=f(x)$ through the point $(2,-1)$ ．

111111	11111111
\।	111
A－N－1＋1－2	$1-1+1+1$
1	$111 / 1$
	$11 / 1$
－心11111	111
人11	
－－2－－1－0	－
\cdots	
－＞＞11－4	
－入へへ111	1
1111111	1111
111 1 1 1	1111
	1－1才
1 1 1 1 1 1 1	11111111
1 \ \ \	11111111

Answers to 7．3 CA \＃2

1.	2.	3． B 5．$y+2=-(x+1)$	4． A 6．$y+1=\frac{1}{2}(x-2)$

