1. The table below gives the values of f^{\prime}, the derivative of f. If $f(1.4)=3$, what is the approximation to $f(2.6)$ obtained by using Euler's method with 3 steps of equal size?

\boldsymbol{x}	1	1.4	1.8	2.2	2.6
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$.1	.3	.5	.8	1.2

2. The table below gives the values of f^{\prime}, the derivative of f. If $f(0)=7$, what is the approximation to $f(1)$ obtained by using Euler's method with 2 steps of equal size?

\boldsymbol{x}	0	0.5	1.0
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-.5	-.3	-.1

3. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=x+y$ with initial condition $f(0)=3$. What is the approximation for $f(0.5)$ obtained using Euler's method with 2 steps of equal length, starting at $x=0$?
4. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=\frac{1}{x}$ with initial condition $f(1)=2$. What is the approximation for $f(1.4)$ obtained using Euler's method with 4 steps of equal length, starting at $x=1$?
5. Let $h(x)=\int_{0}^{x} \sqrt{1+4 t^{2}} d t$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $h(3)$.

$\varepsilon \boxplus て ' 9 \approx(\varepsilon) 4 \cdot \varsigma$	$L S \varepsilon^{\prime} Z \approx\left(\dagger^{\prime} \tau\right) f \cdot t$	$\mathrm{S} L^{\prime} \mathrm{t}$ ($\left.\mathrm{S}^{\prime} 0\right) f \cdot \varepsilon$	$9 \cdot 9 \approx(0 \cdot \tau) f \cdot \tau$	$79^{\circ} \varepsilon \approx\left(9^{\circ} \mathrm{Z}\right) f^{\prime} \mathrm{I}$

