1. The table below gives the values of f^{\prime}, the derivative of f. If $f(4)=1.7$, what is the approximation to $f(4.4)$ obtained by using Euler's method with 2 steps of equal size?

\boldsymbol{x}	4	4.2	4.4
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	0.3	0.6	1.1

2. The table below gives the values of f^{\prime}, the derivative of f. If $f(2)=1$, what is the approximation to $f(2.3)$ obtained by using Euler's method with 3 steps of equal size?

\boldsymbol{x}	2	2.1	2.2	2.3
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-0.1	-0.15	-0.3	-0.5

3. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=\frac{1}{x}$ with initial condition $f(1)=1$. What is the approximation for $f(2)$ obtained using Euler's method with 4 steps of equal length, starting at $x=1$?
4. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=x-y$ with initial condition $f(1)=3$. What is the approximation for $f(1.5)$ obtained using Euler's method with 2 steps of equal length, starting at $x=1$?
5. Let $h(x)=\int_{1}^{x} \frac{1}{t^{2}} d t$. Use Euler's method, starting at $x=1$ with two steps of equal size, to approximate $h(3)$.

	$88 \mathrm{I}^{\prime} \mathrm{Z} \approx\left(\mathrm{S}^{\prime} \mathrm{L}\right) f^{\circ} \mathrm{t}$	96SL'I $\approx(Z) f^{\prime} \varepsilon$	$S \pm 6{ }^{\circ} 0 \approx\left(\varepsilon^{\prime} z\right) f \cdot \tau$	$88^{\prime} \mathrm{I} \approx\left(\dagger^{\prime} \dagger\right) f^{\prime} \mathrm{I}$

