7.5 Euler's Method

Calculus

Name:

1. The table below gives the values of f', the derivative of f. If f(4) = 1.7, what is the approximation to f(4.4) obtained by using Euler's method with 2 steps of equal size?

Ewitt billtuiles			
\boldsymbol{x}	4	4.2	4.4
f'(x)	0.3	0.6	1.1

2. The table below gives the values of f', the derivative of f. If f(2) = 1, what is the approximation to f(2.3) obtained by using Euler's method with 3 steps of equal size?

, 0	- 1	1		
x	2	2.1	2.2	2.3
f'(x)	-0.1	-0.15	-0.3	-0.5

3. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = \frac{1}{x}$ with initial condition f(1) = 1. What is the approximation for f(2) obtained using Euler's method with 4 steps of equal length, starting at x = 1?

4. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x - y$ with initial condition f(1) = 3. What is the approximation for f(1.5) obtained using Euler's method with 2 steps of equal length, starting at x = 1?

5. Let $h(x) = \int_1^x \frac{1}{t^2} dt$. Use Euler's method, starting at x = 1 with two steps of equal size, to approximate h(3).