In lesson 7.6, we will show how to find a solution $y=f(x)$ to a differential equation. In this lesson, we are going to APPROXIMATE a solution to a differential equation. This approximation method is called Euler's method.

1. $\frac{d y}{d x}=1+y$ and $y(0)=0 . \Delta x=0.5$. Using Euler's Method, show an approximation to the solution curve $y=$ $f(x)$.
Step 1: Construct a tangent line at $(0,0)$ for $0 \leq x \leq 0.5$.

Starting point was $(0,0)$. New point to work with is

Step 2: Construct a tangent line at for $0.5 \leq x \leq 1$.

Starting point was

Step 3: Construct a tangent line at

New point to work with is
for $1 \leq x \leq 1.5$.

Here is a way Euler Method questions often appear on the AP Exam.
2. $\frac{d y}{d x}=2 x$ and let $f(x)=y$ be a solution to this differential equation. If $f(1)=3$, what is the approximation to $f(2)$ obtained by using Euler's method with 5 steps of equal size?

First, find the step size. $\Delta x=$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y=y_{1}+m\left(x-x_{1}\right)
\end{aligned}
$$

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{y}^{\prime}	New \boldsymbol{y}

7.5 Euler's Method

Practice

1. The table below gives the values of f^{\prime}, the derivative of f. If $f(1)=2$, what is the approximation to $f(2.5)$ obtained by using Euler's method with 3 steps of equal size?

\boldsymbol{x}	1	1.5	2.0	2.5
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	0.3	0.7	1.2	1.8

2. The table below gives the values of f^{\prime}, the derivative of f. If $f(2)=3$, what is the approximation to $f(2.6)$ obtained by using Euler's method with 2 steps of equal size?

\boldsymbol{x}	2	2.3	2.6
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-0.5	-0.3	-0.1

3. The table below gives the values of f^{\prime}, the derivative of f. If $f(3)=5$, what is the approximation to $f(4.0)$ obtained by using Euler's method with 2 steps of equal size?

\boldsymbol{x}	3	3.25	3.5	3.75	4.0	4.25
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	0.1	0.3	0.5	0.7	0.9	1.1

4. The table below gives the values of f^{\prime}, the derivative of f. If $f(1.5)=4$, what is the approximation to $f(1)$ obtained by using Euler's method with 2 steps of equal size?

\boldsymbol{x}	1	1.25	1.5	1.75	2.0
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	0.3	0.4	0.6	0.9	1.3

5. Let $h(x)=\int_{1}^{x} \sqrt{1+t^{2}} d t$. Use Euler's method, starting at $x=1$ with 2 steps of equal size, to approximate $h(3)$.
6. Let $h(x)=\int_{0}^{x} \sqrt{1+3 t^{2}} d t$. Use Euler's method, starting at $x=0$ with 3 steps of equal size, to approximate $h(3)$.
7. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=2 x-y$ with initial condition $f(1)=0$. What is the approximation for $f(1.3)$ obtained using Euler's method with 3 steps of equal length, starting at $x=1$?
8. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=-\frac{x}{y}$ with initial condition $f(0)=1$. What is the approximation for $f(.3)$ obtained using Euler's method with 3 steps of equal length, starting at $x=0$?
9. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=y$ with initial condition $f(0)=1$. What is the approximation for $f(.5)$ obtained using Euler's method with a step size of $\Delta x=0.1$, starting at $x=0$?
10. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=x+y$ with initial condition $f(0)=1$. What is the approximation for $f(8)$ obtained using Euler's method with 4 steps of equal length, starting at $x=0$?

No Test Prep section for this lesson as the practice problems are similar to what will be on the AP Exam.

