Calculus Name: CA #1						
For each differential equation, find the solution that $\frac{dy}{dy} = \frac{x+y}{x+y}$						
1. $\frac{dy}{dx} = e^{x+y}$ with initial condition $y(0) = -\ln 3$	2. $\frac{dy}{dx} = y \sec^2 x$ and $y = 2$ when $x = 0$.					
3. $\frac{dy}{dx} = \frac{x^3 - 2}{y}$ with initial condition $y(2) = -4$	4. $\frac{dy}{dx} = 2x^2y$ and $y = 1$ when $x = 3$.					
5. The slope field of $\frac{dy}{dx} = 2x^2y$ from question #4 i below. Draw the particular solution $y = f(x)$ wh that you found in question #4 on the slope field.	s shown en $f(3) = 1$					

- 6. Solve the differential equation $\frac{dy}{dx} = \frac{x+2}{y}$ for the particular solution y = f(x) when f(-2) = -3.
- 7. The slope field of $\frac{dy}{dx} = \frac{x+2}{y}$ from question #6 is shown below. Draw the particular solution y = f(x) when f(-2) = -3 that you found in question #6 on the slope field.

Answers to 7.7 CA #1

1. $y = -\ln(-e^x + 4)$	2. $y = 2e^{\tan x}$		3. $y = -\sqrt{\frac{1}{2}x^4 - 4x + 16}$		4. $y = e_3^{\frac{2}{3}x^3 - 18}$		
5. 1 1 1 1 1 1 1 1 1 1	6. y =	$-\sqrt{x^2+4x}$	x + 13				