3.12 Washer Method: Revolve Around Othe Calculus A region <i>S</i> is bounded by the graphs of $y = x - 1$, $x =$			r Axes me: 0 , and y = 3.		CA #1
1.	Sketch the graph and find the area	of region S.			
2.	. Let <i>S</i> be the base of a solid with cross sections perpendicular to the <i>x</i> -axis that form a square. Find the volume of this solid. [Use a calculator after you set up the integral.]		 Let S be the base of a solid with cross sections perpendicular to the y-axis that form a semi-circle. Find the volume of this solid. [Use a calculator after you set up the integral.] 		
Write the equation for the "big radius" and the "little radius" for the solid of revolution when revolving S around the given line. Then setup the integral to find the volume of the solid formed. DO NOT EVALUATE.4. The line $y = -1$.5. The line $y = 5$.6. The line $x = -1$.					
R	=	R =		R =	
r :	=	r =		<i>r</i> =	
V	=	V =		<i>V</i> =	

$\sqrt{b} v^2(1) - \sqrt{b^2} (\gamma + 2)^2 - \sqrt{b^2} v^2(1)$	$xb^{2}(2-) - (2-1-x)^{4}_{0} \int n = V$. δ	$xb\left(^{2}x-\partial 1\right)_{0}^{h} \eta = V.4$			
$\Im_{1} V = \frac{\pi}{2} \int_{-1}^{3} \int_{-1}^{3} \left(\frac{1+\gamma}{2}\right)^{2} d\gamma = 8.3775$	51.333 5. $V = \int_{4}^{0} [3 - (x - 1)]^2 dx =$	$8 = xb[(1-x) - E]_0^{h} = A$.1			
Answers to 8.12 CA #1					