The given functions create boundaries for multiple regions.

1.
$$y = x^3, y = x$$

a. Find *x*-values of the points of intersection, and label them from smallest to largest as A, B, and C.

$$A =$$

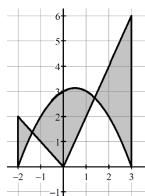
$$B =$$

$$C =$$

b. Set up integrals

2.
$$y = -x^3 + 3x^2 - x$$
, $y = -2x + 1$

a. Find *x*-values of the points of intersection, and label them from smallest to largest as A, B, and C.


$$A =$$

$$B =$$

$$C =$$

b. Set up integrals

3. The figure shows the graphs of y = -x, y = 2x, and $y = 3 + \frac{1}{2}x - \frac{1}{2}x^2$ for $-2 \le x \le 3$. The x-coordinates of the points of intersection of the graphs are x_1 and x_2 , where $x_1 < x_2$. Write a sum of integrals that represents the shaded regions. You do NOT need to solve for x_1 and x_2 .

