Name:
Date:

End of Unit 5 CA - Analytical Applications of Differentiation

1. Calculator active problem. The first derivative of the function f is given by

$$
f^{\prime}(x)=-2+x+3 e^{-\cos (4 x)}
$$

How many points of inflection does the graph of f have on the interval $0<x<\pi$?
2. Calculator active problem. The rate of money in a particular mutual fund is represented by $m(t)=\sin \left(\frac{e}{3}\right)^{t}$ thousand dollars per year where t is measured in years. Is the amount of money from this mutual fund increasing or decreasing at time $t=4$ years? Justify your answer.
3. A particle is traveling along the y-axis and its position from the origin can be modeled by

$$
y(t)=6 t-2 t^{3}+10
$$

where y is meters and t is minutes.
a. On the interval $0 \leq t \leq 2$, when is the particle farthest above the origin.
b. On the interval $0 \leq t \leq 2$, what is the particle's maximum speed?
4. A rectangle is formed with the base on the x-axis and the top corners on the function $y=36-x^{2}$. What length and width should the rectangle have so that its area is a maximum?
5. The graph shows the derivative of f, f^{\prime}. Identify the intervals when f is increasing and decreasing. Include a justification statement.

Increasing:
Decreasing:

6. For the table below, selected values of x and $f(x)$ are given. Assume that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ do not change signs.

x	$f(x)$
0	-10
1	-8
2	-5
3	-1

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
7. Given the function $g(x)=-x^{4}+2 x^{2}-1$, find the interval(s) when g is concave up and decreasing at the same time.
8. The Mean Value Theorem can be applied to which of the following function on the closed interval $[0,5]$?
(A) $\quad f(x)=\frac{x-3}{x+3}$
(B) $f(x)=(x-1)^{\frac{2}{3}}$
(C) $f(x)=\frac{x+3}{x-3}$
(D) $\quad f(x)=|x-4|$
9. To the right is the graph of $h^{\prime}(x)$. Identify all extrema of $h(x)$. No justification necessary on this problem.

10. The derivative of g is given by $g^{\prime}(x)=(5-x) x^{-3}$ for $x>0$. Find all relative extrema and justify your conclusions.
11. Consider the function f defined by $f(x)=e^{x} \sin x$ with domain $[0,2 \pi]$. Find the absolute maximum and minimum values of $f(x)$.
12. Using the figure below, complete the chart by indicating whether each value is positive (+), negative (-), or zero (0) at the indicated points. For these problems, if the point appears to be a max or min, assume it is. If it appears to be a point of inflection, assume it is.

								J		
x	a	b	c	d	e	f	g	\boldsymbol{h}	i	j
$f(x)$										
$f^{\prime}(\boldsymbol{x})$										
$f^{\prime \prime}(x)$										

13. The graph of f is shown below. Which of the following could be the graph of the derivative of f ?

(A)
(B)

(E)

Answers

