TRIGONOMETRY

Trig Functions

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\exp \theta = \frac{1}{\sin \theta} = \frac{\text{hyp}}{\text{opp}}$$

$$\sin \theta = \frac{1}{\cos \theta} = \frac{1}{\cos \theta} = \frac{1}{\cos \theta}$$

$$\cos \theta = \frac{1}{\cos \theta} = \frac{1}{\cos$$

TEST ONLY USES RADIANS!

Must know trig values of special angles $0\pi, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ using Unit Circle or Special Right Triangles.

flippedmetch.com

Graphs of trig functions

Inverse Trig Function

 $\sin^{-1}\theta$ is the same as $\arcsin\theta$

 $\sin^{-1}\theta = \left(\frac{\sqrt{3}}{2}\right)$ means what angle has a sine value of $\frac{\sqrt{3}}{2}$ that means $\theta = \frac{\pi}{3} \pm 2\pi n \text{ or } \frac{2\pi}{3} \pm 2\pi n$ Since θ has infinite answers then it isn't a function.

Bummer. To make it a function we define inverses like:

sin/csc and tan/cot use quadrant I and IV for inverses cos/sec use quadrant I and II for inverses

So... $\theta = \frac{\pi}{3}$ because it is in the first quadrant

Trig Identities

There are a bunch, but you really only need to know Pythagorean Identity. $\sin^2 x + \cos^2 x = 1$ Subtract $\sin^2 x$ to get $\cos^2 x = 1 - \sin^2 x$ or subtract $\cos^2 x$ to get $\sin^2 x = 1 - \cos^2 x$ Divide by $\sin^2 x$ to get $1 + \cot^2 x = \csc^2 x$ or divide by $\cos^2 x$ to get $\tan^2 x + 1 = \sec^2 x$

GEOMETRY

FORMULAS

AREA	SURFACE AREA	VOLUME
Triangle = $\frac{1}{2}bh$	Sphere = $4\pi r^2$	Sphere $=\frac{4}{3}\pi r^3$
$\text{Circle} = \pi r^2$		Cylinder = $\pi r^2 h$
$\text{Trapezoid} = \frac{1}{2}(b_1 + b_2)h$	LATERAL AREA	$Cone = \frac{1}{3}\pi r^2 h$
	Cylinder = $2\pi rh$	Prism = Bh
CIRCUMFERENCE		Pyramid $=\frac{1}{3}Bh$

CIRCUMFERENCE Circle = $2\pi r$

B is the area of the base

DISTANCE FORMULA

The distance between two points (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

ALGEBRA

Linear Functions

Slope

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

 y -intercept Form
 $y = mx + b$
 y - $y_1 = m(x - x_1)$
Point Slope Form
 $y - y_1 = m(x - x_1)$
Parallel Lines
Have the same slope
Perpendicular Lines
Have the opposite reciprocal slopes

Alippedmetch.com

Functions

Translations

All functions move the same way!

Given the parent function $y = x^2$

Move up 4	Move down 3	Move left 2	Move right 1	Move left 2 and down 3
$y = x^2 + 4$	$y = x^2 - 3$	$y = (x+2)^2$	$y = (x - 1)^2$	$y = (x+2)^2 - 3$

To flip (reflect) the function vertically $y = -x^2$ To flip (reflect) the function horizontally $y = (-x)^2$

Notation

Notice open parenthesis () versus closed []

Inequality			Interval
$3 < x \leq 5$	\leftarrow	\rightarrow	(-3,5]
$3 \le x \le 5$	\leftarrow	\rightarrow	[-3,5]
3 < x < 5	\leftarrow	\rightarrow	(-3,5)
$3 \le x < 5$	\leftarrow	\rightarrow	[-3,5)

Even and Odd Functions

So $f(x) = -\sqrt{x-3} + 1$ is a square root function reflected vertically, shifted right 3 and up 1

Infinity is always open parenthesis

Alippedmetch.com

Finding zeros

Must be able to factor and use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Special products

Sum of cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ Difference of cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Exponential and Logarithmic Properties

The exponential function b^x of base *b* is one-to-one which means it has an inverse which is called the logarithm function of base *b* or logarithm of base *b* which is denoted $\log_b x$ which reads "the logarithm of base *b* of *x*" or "log base *b* of *x*". So…

$BASE \ e$ $y = e^x$		$y = \log x + h^{\gamma}$		
		$y = \log_b x \iff x = b^3$		
		Exponential		Logarithmic
Ki Hor	KNOW!	$b^x b^y = b^{x+y}$	Product Rule	$\log_b xy = \log_b x + \log_b y$
	$e^0 = 1$ Horizontal	$\frac{b^x}{b^y} = b^{x-y}$	Quotient Rule	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
	asymptote at $y = 0$	$(b^x)^y = b^{xy}$	Power Rule	$\log_b x^{\mathcal{Y}} = y \log_b x$
		$b^{-x} = \frac{1}{b^x}$		$\log_b\left(\frac{1}{x}\right) = -\log_b x$
$y = \ln x$		$b^{0} = 1$		$\log_b 1 = 0$
as	KNOW!	$b^1 = b$		$\log_b b = 1$
	$\ln 1 = 0$		Change of Base	$\log_b x = \frac{\log_c x}{\log_c b}$
	asymptote at $x = 0$		Natural Log	$\log_e x = \ln e$
			Common Log	$\log_{10} x = \log x$
		Alfordation	00000	