Things to Know for Calculus

TRIGONOMETRY

Trig Functions

$$
\sin \theta=\frac{\text { opp }}{\text { hyp }}
$$

Reciprocal Functions
$\csc \theta=\frac{1}{\sin \theta}=\frac{\text { hyp }}{\text { opp }}$

$$
\cos \theta=\frac{\mathrm{adj}}{\mathrm{hyp}}
$$

$\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hyp }}{\mathrm{adj}}$

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

$\cot \theta=\frac{1}{\tan \theta}=\frac{\text { adj }}{\mathrm{opp}}$

SOH-CAH-TOA

TEST ONLY USES RADIANS!

Must know trig values of special angles $0 \pi, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi$ using Unit Circle or Special Right Triangles.

UNIT CIRCLE

To help remember the signs in each quadrant
$\underline{\text { All }} \underline{\text { Students }} \underline{\text { Take }} \underline{\text { Calculus }}$

SPECIAL RIGHT TRIANGLES

$$
\begin{gathered}
30^{\circ}-60^{\circ}-90^{\circ} \text { Triangles } \\
\text { Which are } \frac{\pi}{6}-\frac{\pi}{3}-\frac{\pi}{2} \text { Triangles }
\end{gathered}
$$

Find $\tan \left(\frac{\pi}{6}\right)$
$\tan \left(\frac{\pi}{6}\right)=\frac{\text { opp }}{\text { adj }}=\frac{1}{\sqrt{3}}$ simplify to $\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangles
Which are $\frac{\pi}{4}-\frac{\pi}{4}-\frac{\pi}{2}$ Triangles

Find $\sin \left(\frac{\pi}{4}\right)$
$\sin \left(\frac{\pi}{4}\right)=\frac{o p p}{h y p}=\frac{1}{\sqrt{2}}$ simplify to $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$

Graphs of trig functions

Inverse Trig Function

$\sin ^{-1} \theta$ is the same as $\arcsin \theta$
$\sin ^{-1} \theta=\left(\frac{\sqrt{3}}{2}\right)$ means what angle has a sine value of $\frac{\sqrt{3}}{2}$ that means $\theta=\frac{\pi}{3} \pm 2 \pi n$ or $\frac{2 \pi}{3} \pm 2 \pi n$
Since θ has infinite answers then it isn't a function. Bummer. To make it a function we define inverses like:
$\sin /$ csc and tan/cot use quadrant I and IV for inverses cos/sec use quadrant I and II for inverses

So... $\theta=\frac{\pi}{3}$ because it is in the first quadrant

Trig Identities

There are a bunch, but you really only need to know Pythagorean Identity. $\boldsymbol{\operatorname { s i n }}^{2} \boldsymbol{x}+\cos ^{2} \boldsymbol{x}=\mathbf{1}$
Subtract $\sin ^{2} x$ to get $\cos ^{2} x=1-\sin ^{2} x$ or subtract $\cos ^{2} x$ to get $\sin ^{2} x=1-\cos ^{2} x$
Divide by $\sin ^{2} x$ to get $1+\cot ^{2} x=\csc ^{2} x$ or divide by $\cos ^{2} x$ to get $\tan ^{2} x+1=\sec ^{2} x$

GEOMETRY

FORMULAS

AREA
Triangle $=\frac{1}{2} b h$
Circle $=\pi r^{2}$
Trapezoid $=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

CIRCUMFERENCE

Circle $=2 \pi r$

SURFACE AREA
Sphere $=4 \pi r^{2}$

LATERAL AREA
Cylinder $=2 \pi r h$

VOLUME
Sphere $=\frac{4}{3} \pi r^{3}$
Cylinder $=\pi r^{2} h$
Cone $=\frac{1}{3} \pi r^{2} h$
Prism $=B h$
Pyramid $=\frac{1}{3} B h$
B is the area of the base

DISTANCE FORMULA

The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

ALGEBRA

Linear Functions

Slope

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

\(\left|\begin{array}{l|l}y -intercept Form

(slope-intercept Form)

y=m x+b\end{array}\right|\)| Point Slope Form |
| :---: |
| $y-y_{1}=m\left(x-x_{1}\right)$ |

Parallel Lines
Have the same slope
Perpendicular Lines
Have the opposite reciprocal slopes

Functions

$y=a \cdot b^{(x-h)}+k$

$y=a(x-h)^{3}+k$

$y=a \log _{b}(x-h)+k$

$y=a|x-h|+k$
Logarithmic Function
$f(x)=\log _{b} x, b<1$

$y=a \log _{b}(x-h)+k$

$y=a \sqrt{x-h}+k$
$y=a \cdot b^{(x-h)}+\boldsymbol{k}$
Greatest Integer

Rational Function

Translations

All functions move the same way!
Given the parent function $y=x^{2}$

Move up $4 \quad$ Move down 3

$$
y=x^{2}+4
$$

$y=x^{2}-3$

Move left 2
$y=(x+2)^{2}$

Move right 1
$y=(x-1)^{2}$

Move left 2 and down 3
$y=(x+2)^{2}-3$

To flip (reflect) the function vertically $y=-x^{2}$
To flip (reflect) the function horizontally $y=(-x)^{2}$

Notation

Notice open parenthesis () versus closed []

Inequality		
$-3<x \leq 5$	\longleftrightarrow	Interval
$-3 \leq x \leq 5$		
$-3<5,5]$		
$-3 \leq x<5$	\longleftrightarrow	$\longleftrightarrow 3,5]$
$(-3,5)$		
$[-3,5)$		

Even and Odd Functions

EVEN
$f(-x)=f(x)$
Symmetric about the y-axis

So $f(x)=-\sqrt{x-3}+1$ is a square root function reflected vertically, shifted right 3 and up 1

Infinity is always open parenthesis

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Inequality } \\
x<3
\end{array} & \begin{array}{c}
\text { Interval } \\
(-\infty, 3)
\end{array} \\
x \leq 3 \text { or } x>5 \\
x \neq 3 & \longleftrightarrow & (-\infty, 3](5, \infty) \\
\text { all Real numbers } & \longleftrightarrow & (-\infty, 3)(3, \infty) \\
(-\infty, \infty)
\end{array}
$$

ODD
$f(-x)=-f(x)$
Symmetric about the origin

Odd Function

Domain and Range

Domain = all possible x values
Range $=$ all possible y values

Algebraically
You can't divide by zero You can't square root a negative

$$
y=\sqrt{2 x+5}
$$

D: $\left[-\frac{5}{2}, \infty\right)$

$$
y=\frac{x^{2}-1}{x^{2}+7 x+12}
$$

D: $(-\infty,-4)(-4,-3)(-3, \infty)$

Graphically Just look at it

D: $(-\infty,-1)(-1,5]$
$\mathrm{R}:(-\infty, 2.5]$

Finding zeros

Must be able to factor and use the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Special products

Sum of cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Difference of cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Exponential and Logarithmic Properties

The exponential function b^{x} of base b is one-to-one which means it has an inverse which is called the logaritmic function of base b or logarithm of base b which is denoted $\log _{b} x$ which reads "the logarithm of base b of x " or "log base b of x ". So...

$$
y=\log _{b} x \longleftrightarrow x=b^{y}
$$

Exponential $b^{x} b^{y}=b^{x+y}$	Product Rule	Logarithmic $\log _{b} x y=\log _{b} x+\log _{b} y$
$\frac{b^{x}}{b^{y}}=b^{x-y}$	Quotient Rule	$\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
$\left(b^{x}\right)^{y}=b^{x y}$	Power Rule	$\log _{b} x^{y}=y \log _{b} x$
$b^{-x}=\frac{1}{b^{x}}$		$\log _{b}\left(\frac{1}{x}\right)=-\log _{b} x$
$b^{0}=1$	(og$b=0$	
$b^{1}=b$	Change of Base	$\log _{b} b=1$
	Natural Log	$\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$
	Common Log	$\log _{e} x=\ln e$
	$\log _{10} x=\log x$	

