1.4 Continuity

CA #1

Identify and classify each point of discontinuity of the given function.

1.
$$f(x) = \frac{7x-3}{3}$$

1.
$$f(x) = \frac{7x-3}{3}$$
 2. $f(x) = \frac{x^2}{2x^2-5x}$ 3. $f(x) = \frac{7x}{7x-3}$

3.
$$f(x) = \frac{7x}{7x-3}$$

$$4. \ f(x) = \sqrt{8 - 2x}$$

5.
$$f(x) = \begin{cases} 8x - 7, & x \le 3 \\ x + 15, & x > 3 \end{cases}$$

5.
$$f(x) =\begin{cases} 8x - 7, & x \le 3 \\ x + 15, & x > 3 \end{cases}$$
6. $f(x) =\begin{cases} x^2 - 5x - 6, & x < -2 \\ 6 - x, & x > -2 \\ 1, & x = -2 \end{cases}$
7. $f(x) =\begin{cases} 2\ln x, & x < 4 \\ \ln x^2, & x \ge 4 \end{cases}$

$$\int_{0}^{\infty} f(x) = \begin{cases} \ln x^2, & x \ge 4 \end{cases}$$

Find the domain of each function.

8.
$$s(x) = \frac{\sqrt{4x-5}}{2}$$

9.
$$g(x) = x^2 - x + 12$$

10.
$$h(t) = \frac{\sqrt{t+16}}{t-2}$$

$$11. \ v(t) = \frac{2t}{t\sqrt{t-8}}$$

12.
$$g(x) = \frac{x-9}{x^2+4x-5}$$

13.
$$f(x) = \frac{5}{10 - \sqrt{x}}$$

Below is a table of values for a continuous function f. Use this table to answer questions 14-15.

x	<i>x</i> 0		4	7	10
f(x)	-100	-1	-3	2	- 5

- 14. On the interval $0 \le x \le 10$, must there be a value of x for which f(x) = -4? Explain.
- 15. What is the minimum number of zeros f must have on the interval $0 \le x \le 10$?

Below is a table of values for a continuous function q. Use this table to answer questions 16-17.

x	x -5		17 20 30				
g(x)	2	6	-5	9	1		

- 16. On the interval $-5 \le x \le 30$, must there be a value of x for which g(x) = 10? Explain.
- 17. What is the minimum number of zeros g must have on the interval $-5 \le x \le 30$?

Answers to 1.4 CA #1

1. Continuous function	2. Hole at $x = \frac{5}{2}$		at $x = \frac{3}{7}$	4. Continuous on its domain.		5. jump disc. at $x = 3$		at:	6. Hole at $x = -2$
7. Continuous 8	$3. \ x \ge \frac{5}{4}$	9. All real	10. <i>t</i> ≥	•	11. <i>t</i> > 8			l reals,	13. $x \ge 0$,
on its domain.	*	numbers	t	≠ 2			$x \neq 1$		$x \neq 100$
							$x \neq -$	5	
14. Yes. On the interval $0 \le x \le 2$, the function changes from -100 to -1 and on the							15. 2		
interval $7 \le x \le 10$, the function changes from 2 to -5 . f must equal -4 at some									
point in those intervals by way of the Intermediate Value Theorem.									
16. No. The highest value of g from the table is 9. While g might equal 10, we can't						17. 2			
guarantee it through the IVT.									