1.4 Continuity

Defining Continuity:

Formal Definition of Continuity:

For f(x) to be continuous at x = c, the following three conditions must be met:

- 1.
- 2.
- 3.

Continuous function...or continuous on its domain?

Types of Discontinuities:

- 1.
- 2.
- 3.

For each function identify the \boldsymbol{x} value and type of each discontinuity.

1.
$$f(x) = \frac{x^2 - 8x + 12}{x^2 + 3x - 10}$$

$$2. f(x) = \sqrt{2x - 3}$$

3.
$$g(x) = \begin{cases} x^2 - 2x + 1, & x < -1 \\ x + 2, & -1 \le x < 2 \\ 2^x, & x \ge 2 \end{cases}$$

1.4 Continuity

Finding the Domain

Two scenarios to watch for when looking for a restriction on the domain.

$$f(x) = \frac{x-5}{x+1}$$

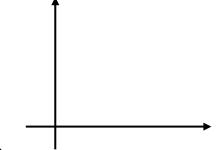
$$f(x) = \sqrt{7x + 3}$$

Find the domain of each function.

$$4. f(x) = \frac{3x}{x\sqrt{x+5}}$$

5.
$$h(x) = \frac{5}{2-\sqrt{x}}$$

Intermediate Value Theorem (for continuous functions) - IVT



- 6. Use the IVT to answer the following questions if $f(x) = x^3 2x 5$.
 - a. Find f(1).
 - b. Find f(2).
 - c. Find f(3).
 - d. Does the function have a zero? How do you know?

1.4 Continuity

Practice

Identify and classify each point of discontinuity of the given function.

1.
$$f(x) = \frac{x}{x+1}$$

1.
$$f(x) = \frac{x}{x+1}$$
 2. $f(x) = \frac{x^2}{x^2+3x}$

3.
$$f(x) = \frac{2x}{2x-5}$$

4.
$$f(x) = \sqrt{2 - 6x}$$

5.
$$f(x) = \frac{x+2}{x^2-2x-8}$$

6.
$$f(x) = \frac{4x+5}{3}$$

7.
$$f(x) = \begin{cases} 3 - 2x, & x < 2 \\ x - 3, & x \ge 2 \end{cases}$$

8.
$$f(x) = \begin{cases} 5x+1, & x \le -1 \\ x+3, & x > -1 \end{cases}$$

$$9. f(x) = \begin{cases} \frac{x^2 - 1}{x + 11}, & x < 4 \\ x - 3, & x > 4 \end{cases}$$

10.
$$f(x) = \begin{cases} \frac{x}{e} + 3, & x < e \\ \ln x^4, & x \ge e \end{cases}$$

Find the domain of each function.

11.
$$s(x) = \frac{\sqrt{6x-2}}{5}$$

12.
$$w(t) = \frac{6}{\sqrt{2t+10}}$$

$$13. f(x) = \frac{x}{\sqrt{6-2x}}$$

$$14. \ v(t) = \frac{3t}{t\sqrt{t+7}}$$

15.
$$g(x) = \frac{x+1}{x^2+5x+4}$$

16.
$$g(w) = \frac{2}{4 - \sqrt{w}}$$

17.
$$s(t) = \sqrt[3]{t-8}$$

18.
$$h(t) = \frac{\sqrt{4-t}}{t-5}$$

19.
$$g(x) = x^2 + 11x + 30$$

Below is a table of values for a continuous function f. Use this table to answer questions 20-22.

x	3	4	5	6	7
f(x)	4	1	-3	-1	6

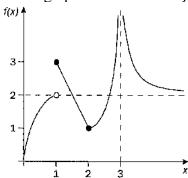
- 20. On the interval $3 \le x \le 7$, must there be a value of x for which f(x) = 5? Explain.
- 21. On the interval $3 \le x \le 7$, **could** there be a value of x for which f(x) = 7? Explain.
- 22. What is the minimum number of zeros f must have on the interval $3 \le x \le 7$?

Below is a table of values for a continuous function g. Use this table to answer questions 23-26.

Č i					
x	0	2	15	32	50
g(x)	-1	10	17	-10	8

- 23. On the interval $0 \le x \le 15$, must there be a value of x for which g(x) = -3? Explain.
- 24. On the interval $0 \le x \le 50$, must there be a value of x for which g(x) = 11? Explain.
- 25. What is the minimum number of zeros g must have on the interval $15 \le x \le 50$?
- 26. What is the minimum number of zeros g must have on the interval $0 \le x \le 50$?

1. The graph of the function f(x) is shown below:



Which of the following statements is true about f?

- I. f is undefined at x = 1.
- II. f is defined but not continuous at x = 2.
- III. f is defined and continuous at x = 3.
- (A) Only I
- (B) Only II
- (C) I and II
- (D) I and III
- (E) None of the statements are true.
- 2. Let $y = \frac{x^2 + 4x 21}{x^2 9}$. This function has a hole. What is the y-value of the hole?
 - (A) $\frac{5}{3}$
- (B) 3 (C) $-\frac{10}{3}$ (D) 0 (E) -3
- 3. For which value of k is the following function continuous at x = 4?

$$f(x) = \begin{cases} \sin\frac{\pi}{x}, & x \le 4\\ k\sqrt{\frac{x}{2}}, & x > 4 \end{cases}$$

- (A) k = 2 (B) k = 1 (C) k = -1 (D) $k = \frac{1}{2}$ (E) $k = -\frac{1}{2}$

х	0	1	2
f(x)	1	k	2

The function f is continuous on the closed interval [0, 2] and has values that are given in the table above. The equation $g(x) = \frac{1}{2}$ must have at least two intersections with f in the interval [0, 2] if $k = \frac{1}{2}$

- (A) 0
- (B) $\frac{1}{2}$
- (C) 1
- (D) 2
- (E) 3

5. For what value of k will the function $f(x) = \frac{x^2 - (k+2)x + 6}{x - k}$ have a point discontinuity at x = k?

- (A) k = -1

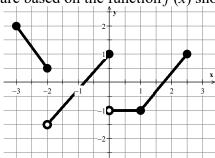
- (B) k = 0 (C) k = 1 (D) k = 2 (E) k = 3

6. Suppose f is continuous on the closed interval [0,4] and suppose f(0) = 1, f(1) = 2, f(2) = 0, f(3) = -3, f(4) = 3. Which of the following statements about the zeros of f on [0,4] is always true?

- (A) f has exactly one zero on [0, 4].
- (B) f has more than one zero on [0, 4].
- (C) f has more than two zeros on [0, 4].

- (D) f has exactly two zeros on [0, 4].
- (E) None of the statements above is true.

Questions 7 through 9 are based on the function f(x) shown in the graph below:



7. The function f(x) has a removable discontinuity at:

(A)
$$x = -2$$
 only

(B)
$$x = 0$$
 only

(C)
$$x = 1$$
 only

(D)
$$x = -2$$
 and $x = 0$ only

- (E) f(x) has no removable discontinuities.
- 8. On what intervals is f(x) continuous?

(A)
$$[-3, -2] \cup [-2, 0] \cup [0, 2.5]$$

(B)
$$[-3, -2] \cup (-2, 0] \cup [0, 2.5]$$

(C)
$$[-3, -2] \cup (-2, 0] \cup (0, 2.5]$$

(D)
$$[-3, -2] \cup [-2, 0] \cup (0, 2.5]$$

(E)
$$[-3, -2] \cup (-2, 0] \cup (0, 1) \cup (1, 2.5]$$

9. The function has a jump discontinuity at:

(A)
$$x = -2$$
 only

(B)
$$x = 0$$
 only

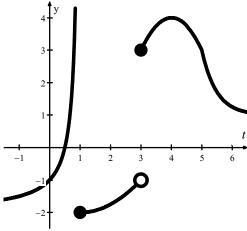
(C)
$$x = 1$$
 only

(D)
$$x = -2$$
 and $x = 0$ only

(D)
$$x = -2$$
 and $x = 0$ only (E) $f(x)$ has no jump discontinuities.

For this Free Response problem, answer each question as completely as possible. **Do NOT look at the answers until completed!** When done, use the Solution Key to grade your work. Put your score in the box below.

The graph of a function f is shown below and describes the position of a particle as it moves along the y-axis with respect to time.



- a. Describe the movement of the particle on the interval [1,3].
- b. Assume f(t) > 1 for t > 6, and y = 1 is an asymptote. Describe the movement of the particle as t approaches infinity.
- c. Can we use the Intermediate Value Theorem on the interval [-1,2] to show that f has a zero in that interval? On the interval [2,5]? Explain your reasoning.