


Solve the differential equation.

$$\frac{dy}{dx} = \frac{x^2}{y}$$

$$\frac{dy}{dx} = (\sin x)y^2$$

Initial Value

Solve for *y* if $\frac{dy}{dx} = (xy)^2$ and y = 1 when x = 1

Use the differential to answer the following: $\frac{dy}{dx} = \frac{2x}{y}$ -2 -1 -1 (a) Fill in the slope field (b) Write the equation of the line tangent to the solution curve at point (2,1). (c) Find the particular solution with initial condition of f(2) = 1. Solve the differential equation. $\frac{dy}{dx} = (y+2)e^x$ (a) Sketch a particular solution through the point (0, -1)(b) Find the particular solution with initial condition (0, -1)

SUMMARY:

Now, summarize your notes here!

PRACTICE

Solve the differential equation.	
Solve the differential equation. 1. $\frac{dy}{dx} = \frac{3x^2}{y}$	2. $\frac{dy}{dx} = e^x y^2$
$3. \ \frac{dy}{dx} = -2x(y-3)$	$4. \ \frac{dy}{dx} = x\cos x^2$
Find the solution that satisfies the given condition.	
5. $\frac{dy}{dx} = y \sin x$ if $y(0) = 2$	6. $\frac{dy}{dx} = \frac{e^x}{y}$ if $y(0) = -4$

Find the solution that satisfies the given condition.		
7. $\frac{dy}{dx} = xy^2$ and $y = 1$ when $x = 0$	8. $\frac{dy}{dx} = \frac{1}{5}(8 - y)$ and $y = 6$ when $x = 0$	
Use the differential equation and its slope field to answer the following.		
 9. ^{dy}/_{dx} = (y + 5)(x + 2) a. Sketch a particular solution through the point (0,1). b. Find the particular solution y = f(x) when f(0) = 	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
 10. ^{dy}/_{dx} = e^{x-y} a. Sketch a particular solution through the point (0,2). b. Find the particular solution y = f(x) when f(0) = 		

MULTIPLE CHOICE

1. $\int_{-1}^{1} \frac{4}{1+x^2} dx =$ (A) 0 (B) π (C) 1 (D) 2π (E) 2

2. If $\frac{dy}{dx} = \frac{(3x^2+2)}{y}$ and y = 4 when x = 2, then when x = 3, y =

- (A) 18 (B) $\pm \sqrt{66}$ (C) 58 (D) $\pm \sqrt{74}$ (E) $\pm \sqrt{58}$
- 3. If $\frac{dy}{dx} = \frac{x^3+1}{y}$ and y = 2 when x = 1, then when x = 2, y = 1

(A)
$$\sqrt{\frac{27}{2}}$$

(B) $\sqrt{\frac{27}{8}}$
(C) $\pm \sqrt{\frac{27}{8}}$
(D) $\pm \frac{3}{2}$
(E) $\pm \sqrt{\frac{27}{2}}$

4. If $\frac{dy}{dt} = -2y$ and if y = 1 when t = 0, what is the value of t for which $y = \frac{1}{2}$?

(A) $-\frac{1}{2}\ln 2$ (B) $-\frac{1}{4}$ (C) $\frac{1}{2}\ln 2$ (D) $\frac{\sqrt{2}}{2}$ (E) $\ln 2$

- 5. What is the equation of the line tangent to the graph $y = \sin^2 x$ at $x = \frac{\pi}{4}$?
 - (A) $y \frac{1}{2} = -\left(x \frac{\pi}{4}\right)$ (B) $y - \frac{1}{2} = \left(x - \frac{\pi}{4}\right)$ (C) $y - \frac{1}{\sqrt{2}} = \left(x - \frac{\pi}{4}\right)$ (D) $y - \frac{1}{\sqrt{2}} = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$ (E) $y - \frac{1}{2} = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$

FREE RESPONSE

YOUR SCORE: ____ out of 9

- 6. Consider the differential equation $\frac{dy}{dx} = e^y(3x^2 6x)$. Let y = f(x) be the particular solution to the differential equation that passes throug(1,0)h.
 - (a) Write an equation for the line tangent to the graph of f at the point (1,0). Use the tangent line to approximate f(1.2).

(b) Find y = f(x), the particular solution to the differential equation that passes through (1,0).