\qquad

Recall:

Notes

- Find the area under the curve of $f(x)$

How would you find the area between two curves?

Area Between Two Curves:

$$
\begin{aligned}
A= & \int_{a}^{b}[\quad] d x \\
& \geq \quad \text { for all } x \text { in }[a, b]
\end{aligned}
$$

1. Find the area bounded by the curves of $y=x^{2}+2$, $y=-x, x=0$, and $x=1$.

2. Find the area bounded by $y=2-x^{2}$ and $y=x$.
3. Set up the integral that allows you to find the area in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by $y=x-6$.

4. Set up the integrals to find the area bounded by $f(x)=3 x^{3}-x^{2}-10 x$ and $g(x)=-x^{2}+2 x$.
5. Set up the integral to find the area bounded by $x=3-y^{2}$ and $x=y+1$.

11.1 Area Between Curves

Practice

Calculus
Sketch the graph of each equation, then set up the integral to find the area of the region bounded by the graphs. Do NOT evaluate, just set up the integral!

1. $f(x)=x^{2}+2, g(x)=-x$, $x=-2$, and $x=1$.

2. $f(x)=6-x^{2}$ and $g(x)=x$

3. $x=y^{2}-4, x=-3 y$

4. $y=x, y=2-x, y=0$

5. $y=\frac{1}{x^{2}}, y=0, x=1, x=5$

6. $x=y^{2}, x=y+2$

7. $f(x)=2 x^{3}-x^{2}-7 x, g(x)=x^{2}+5 x$

Find the area of the region bounded by the given equations. Evaluate an integral with respect to x (perpendicular to the x-axis) by using a calculator. Find the same area by evaluating an integral with respect to y (perpendicular to the y-axis) by showing your work.
8. $y=x^{2}$ and $y=x^{3}$

Sketch your graph here in the middle!
with respect to x (and a calculator)

with respect to y (show work)
9. $y=\sqrt{x}, x=0$ and $y=x-2 \quad$ Sketch your graph here in the middle! with respect to x (and a calculator) with respect to y (show work)
10. $y=x^{2}, y=-x, x=0, x=2 \quad$ Sketch your graph here in the middle! with respect to x (and a calculator) with respect to y (show work)
11. $x=\frac{1}{2} y^{2}, y=1, y=-\frac{1}{2} x+3 \quad$ Sketch your graph here in the middle! with respect to x (and a calculator)

12. $y=e^{x^{2}}-2$ and $y=\sqrt{4-x^{2}} \quad$ Sketch your graph here in the middle!
with respect to x (and a calculator)
You need a graphing calculator to help you find the boundaries.

11.1 Area Between Curves

1. Which of the following functions grows the fastest?
(A) $a(u)=\left(\frac{1}{2}\right)^{u}$
(B) $b(u)=u^{100}+u^{99}$
(C) $c(u)=4^{u}$
(D) $d(u)=200 e^{u}$
(E) $e(u)=e^{u}+u^{3}$
2. If $0 \leq k \leq \frac{\pi}{2}$ and the area under the curve $y=\sin x$ from $x=k$ to $x=\frac{\pi}{2}$ is 0.75 , then $k=$
(A) 1.318
(B) 0.848
(C) 0.723
(D) 0.533
(E) 0.253
3. Let $f(x)=5 x \sec x+x^{3} \cos x+17 \pi$. Determine $\frac{d}{d x} f(x)$.
(A) $5 \sec x \tan x+3 x^{2} \cos x+17 \pi$
(D) $5 \sec x+5 x \sec x \tan x+3 x^{2} \cos x-x^{3} \sin x$
(B) $5 \sec ^{2} x-x^{3} \sin x$
(E) $5 \sec x+5 x \sec x \tan x-3 x^{2} \cos x+$ $x^{3} \sin x+17 \pi$
(C) $5 \sec x \tan x-3 x^{2} \sin x$

2003 Form A \#1 [calculator allowed]

Let R be the shaded region bounded by the graphs of $y=\sqrt{x}$ and $y=e^{-3 x}$ and the vertical line $x=1$, as shown in the figure above. Find the area R.

2003 Form B \#1 [calculator allowed]

Let f be the function given by $f(x)=4 x^{2}-x^{3}$, and let ℓ be the line $y=18-3 x$, where ℓ is tangent to the graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ, and the x-axis, as shown above.
(a) Show that ℓ is tangent to the graph of $y=f(x)$ at the point $x=3$.
(b) Find the area of S.

