11.2 Solids of Revolution (Discs)

For each problem, sketch the area bounded by the equations and revolve it around the x-axis. Find the volume of the resulting solid formed by this revolution. Leave your answers in terms of π .

1.
$$y = -x + 4$$
, $x = 1$, $y = 0$

2.
$$y = -\sqrt{x}$$
, $x = 2$, $x = 3$

Same instructions as above but use a calculator and round to three decimals.

3.
$$y = 2 - x^2$$
, $x = 0$

4.
$$y = \sqrt{16 - x^2}$$
, $x = -1$, $y = 0$

Same instructions as above but revolve around the y-axis now. Leave your answers in terms of π .

5.
$$y = \sqrt{16 - x^2}$$
, $x \ge 0$, $y = 0$

6.
$$y = x^3$$
, $x = 0$, $y = 8$

Find the volume by revolving the area about the given line. Set up the integral, then use a calculator to evaluate. Remember 3 DECIMALS in AP Calculus!!

- 7. $y = 3 x^2$ and y = -1 about the line y = -1.
- 8. $x = \sqrt{y}$, y = 4, x = -1, y = 1 about the line x = -1.

Answers to 11.2 CA #1

1. $\pi \int_{1}^{4} (-x+4)^2 dx = 9\pi$	$2. \ \pi \int_2^3 x dx = \frac{5}{2} \pi$	3. $\pi \int_0^{\sqrt{2}} (2 - x^2)^2 dx = 9.478$
4. $\pi \int_{-1}^{4} (16 - x^2) dx = 183.2596$	5. $\pi \int_0^4 (16 - y^2) dy = \frac{128}{3} \pi$	6. $\pi \int_0^8 (\sqrt[3]{y})^2 dy = \frac{96}{5}\pi$
7. $\pi \int_{-2}^{2} (4 - x^2)^2 dx = 107.233$	8. $\pi \int_{1}^{4} (\sqrt{y} + 1)^{2} dy = 62.308$	