The base of an object is bounded by the lines $y=x^{2}-x-3$ and $y=x$. Find the volume of the object with the indicated cross sections taken perpendicular to the \boldsymbol{x}-axis. Use a calculator after you set up the integral!

1. Squares
2. Equilateral triangles
3. Semi-circles
4. Set up the integral to find the area of the region bounded by $y=\sqrt[3]{x}$, and $y=x$. DO NOT EVALUATE.

With respect to x.

With respect to y.
6. The region bounded between $y=\frac{1}{x}$ and the x-axis between the vertical lines $x=1$ and $x=e$ is rotated about the line $y=-2$. What is the integral that represents the volume of the resulting solid of revolution?

Answers to 11.4 CA \#1

1. $\int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x=34.133$	2. $\frac{\sqrt{3}}{4} \int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x=14.78$	3. $\frac{\pi}{8} \int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x=13.404$
4. $\frac{1}{2} \int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x=17.067$	5. $\int_{0}^{1}(\sqrt[3]{x}-x) d x$	
5b. $\int_{0}^{1}\left(y-y^{3}\right) d y$	6. $\pi \int_{1}^{e}\left(\frac{1}{x}+2\right)^{2}-4 d x$	

