11.4 Perpendicular Cross Sections

CA #1

Calculus Name:

The base of an object is bounded by the lines $y = x^2 - x - 3$ and y = x. Find the volume of the object with the indicated cross sections taken perpendicular to the x-axis. Use a calculator after you set up the integral!

1. Squares

2. Equilateral triangles

3. Semi-circles

4. Isosceles right triangles (side is the base)

5. Set up the integral to find the area of the region bounded by $y = \sqrt[3]{x}$, and y = x. DO NOT EVALUATE.

With respect to x.

With respect to y.

6. The region bounded between $y = \frac{1}{x}$ and the x-axis between the vertical lines x = 1 and x = e is rotated about the line y = -2. What is the integral that represents the volume of the resulting solid of revolution?

Answers to 11.4 CA #1

1. $\int_{-1}^{3} (-x^2 + 2x + 3)^2 dx = 34.133$	$2.\frac{\sqrt{3}}{4}\int_{-1}^{3}(-x^2+2x+3)^2dx=14.78$		$3. \frac{\pi}{8} \int_{-1}^{3} (-x^2 + 2x + 3)^2 dx = 13.404$
$4.\frac{1}{2}\int_{-1}^{3}(-x^2+2x+3)^2dx=17.067$		$5a. \int_0^1 (\sqrt[3]{x} - x) dx$	
5b. $\int_0^1 (y - y^3) dy$		6. $\pi \int_{1}^{e} \left(\frac{1}{x} + 2\right)^{2} - 4$	4 dx