11.4 Perpendicular Cross Sections

Calculus	Name:	CA #2			
The base of an object is bounded by the lines $y = x^2 - 4$ and $y = 4 - 2x$. Find the volume of the object with the indicated cross sections taken perpendicular to the x-axis. Use a calculator after you set up the integral!					
1. Squares	2. Equilateral triangles				
3. Semi-circles	4. Isosceles right triangl	les (side is the base)			

5. Set up the integral to find the area of the region bounded by $y = x^2 - 2$, and y = 2. DO NOT EVALUATE.

-2

With respect to x.

With respect to *y*.

6. A solid is generated when the region in the first quadrant bounded by the graph of $y = 1 + \sin^2 x$, the line $x = \frac{\pi}{2}$, the *x*-axis, and the *y*-axis is revolved about the *x*-axis. What is the integral that represents the volume of the resulting solid of revolution?

x

1. $\int_{-4}^{2} (-x^2 - 2x + 8)^2 dx = 355.2$	$2.\frac{\sqrt{3}}{4}\int_{-4}^{2}(-x^2-2x+8)^2dx = 153.806$		3. $\frac{\pi}{8}\int_{-4}^{2}(-x^2-2x+8)^2dx=139.487$	
$4. \frac{1}{2} \int_{-4}^{2} (-x^2 - 2x + 8)^2 dx = 177.6$		5a. $\int_{-2}^{2} (4 - x^2) dx$		
5b. $\int_{-2}^{2} (2\sqrt{y+2}) dy$		6. $\pi \int_0^{\frac{\pi}{2}} (1 + \sin^2 x)^2$	$^{2} dx$	

Answers to 11.4 CA #2