Calculus

Write your questions and thoughts here!

Name: Notes Volume of a Solid with known Cross Sections V =of a cross section perpendicular to the *x*-axis. where is the Area of various geometric shapes Equilateral triangle: A =Square: A =Isosceles right triangle: Semicircle: A =with hypotenuse h =A =1. Find the volume of the solid whose base is bounded by $y = x^2$ and $y = \sqrt{x}$, with the indicated cross sections taken perpendicular to the *x*-axis. a.) Square х b.) Equilateral triangle c.) Semicircle d.) Isosceles right triangle (side is the base)

Write your questions and thoughts here!	 Find the volume of the solid whose base is bounded by y = x³, y = 0, and x = 2 with cross sections taken perpendicular to the y-axis that form a square. 	
Now summarize what you learned!		

11.4 Perpendicular Cross Sections

l

Practice

Calculus	
the object with the indicated cross sections taken	x - 4, $y = 4 - x$, and $x = 0$. Find the volume of perpendicular to the x-axis. Use a calculator
after you set up the integral!	
1. Squares	2. Equilateral triangles
3. Semi-circles	4. Isosceles right triangles (side is the base)

5. Set up the integral to find the area of the region bounded by $x = 4 - y^2$, $y = \frac{2}{3}x - 1$, and x = 0. DO NOT EVALUATE.

With respect to *x*.

With respect to *y*.

10. The region enclosed by the y-axis, the line y = 2, and the curve $y = \sqrt[3]{x}$ is revolved about the y-axis. Set up the integral used to find the volume of the solid that is generated.

The base of an object is bounded by the lines $y = \sqrt{x - 1}$, $x = 3$, and $y = 0$. Set up the integral to find the volume of the object with the indicated cross sections taken perpendicular to the <u>y</u> -axis. DO NOT EVALUATE.					
11. Squares	12. Equilateral triangles				
13. Semi-circles	14. Isosceles right triangles (side is the base)				

15. The region in the first quadrant enclosed by the graphs of $y = 2 \ln x$, y = 2, and x = 1 is rotated about the *x*-axis. What is the integral that represents the volume of the resulting solid of revolution?

11.4 Perpendicular Cross Sections

Test Prep

- 1. What is the area of the region in the first quadrant enclosed by the graphs of $y = \sin x$, y = 2 x, and the *x*-axis?

(A) 0.552 (B) 0.551 (C) 1.100 (D) 1.000 (E) 2	(A) 0.552	(B) 0.951	(C) 1.106	(D) 1.600	(E) 2.1
---	-----------	-----------	-----------	-----------	----------------

2003 Form A #1 [calculator allowed]

You already did parts (a) and (b) in previous packets. Information needed from parts (a) and (b) is provided.

Let *R* be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and the vertical line x = 1, as shown in the figure above.

Point of intersection: $e^{-3x} = \sqrt{x}$ at (0.238734, 0.488604)

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.