\qquad

Volume of a Solid with known Cross Sections

$$
V=
$$

where is the
of a cross section perpendicular to the x-axis.

Area of various geometric shapes	
Square: $\boldsymbol{A}=$	Equilateral triangle: $\boldsymbol{A}=$
Semicircle: $\boldsymbol{A}=\quad$	Isosceles right triangle: $\boldsymbol{A}=\quad$ with hypotenuse $\boldsymbol{h}=$

1. Find the volume of the solid whose base is bounded by $\boldsymbol{y}=\boldsymbol{x}^{2}$ and $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$, with the indicated cross sections taken perpendicular to the x-axis.
a.) Square
b.) Equilateral triangle
c.) Semicircle
d.) Isosceles right triangle (side is the base)
2. Find the volume of the solid whose base is bounded by $y=x^{3}, y=0$, and $x=2$ with cross sections taken perpendicular to the y-axis that form a square.

11.4 Perpendicular Cross Sections

Practice

Calculus
The base of an object is bounded by the lines $y=x-4, y=4-x$, and $x=0$. Find the volume of the object with the indicated cross sections taken perpendicular to the \boldsymbol{x}-axis. Use a calculator after you set up the integral!

1. Squares
2. Semi-circles
3. Equilateral triangles
4. Isosceles right triangles (side is the base)
5. Set up the integral to find the area of the region bounded by $x=4-y^{2}, y=\frac{2}{3} x-1$, and $x=0$. DO NOT EVALUATE.

With respect to x.

With respect to y.

The base of an object is bounded by the lines $x^{2}+y^{2}=100$. Find the volume of the object with the indicated cross sections taken perpendicular to the \boldsymbol{x}-axis. Use a calculator after you set up the integral!

6. Squares	7. Equilateral triangles

8. Semi-circles
9. Isosceles right triangles (hypotenuse = base)
10. The region enclosed by the y-axis, the line $y=2$, and the curve $y=\sqrt[3]{x}$ is revolved about the y axis. Set up the integral used to find the volume of the solid that is generated.

The base of an object is bounded by the lines $y=\sqrt{x-1}, x=3$, and $y=0$. Set up the integral to find the volume of the object with the indicated cross sections taken perpendicular to the y axis. DO NOT EVALUATE.
11. Squares \quad 12. Equilateral triangles
15. The region in the first quadrant enclosed by the graphs of $y=2 \ln x, y=2$, and $x=1$ is rotated about the x-axis. What is the integral that represents the volume of the resulting solid of revolution?

11.4 Perpendicular Cross Sections

Test Prep

1. What is the area of the region in the first quadrant enclosed by the graphs of $y=\sin x, y=2-x$, and the x-axis?
(A) 0.552
(B) 0.951
(C) 1.106
(D) 1.600
(E) 2.152

2003 Form A \#1 [calculator allowed]

You already did parts (a) and (b) in previous packets. Information needed from parts (a) and (b) is provided.

Let R be the shaded region bounded by the graphs of $y=\sqrt{x}$ and $y=e^{-3 x}$ and the vertical line $x=1$, as shown in the figure above.

Point of intersection: $e^{-3 x}=\sqrt{x}$ at $(0.238734,0.488604)$
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

