2.1 Average Rate of Change

Name:_____

Notes

Recall: Rate of Change

= -----=

Average Rate of Change:

A continuous function f(x) on the interval [a, b] has an average rate of change of

$$\frac{f(b) - f(a)}{b - a}$$
 or $\frac{f(a) - f(b)}{a - b}$

This is also the _____ of the ____ line.

Example 1: Find the average rate of change of $f(x) = x^3 - 2x$ on the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$

Example 2: The function $h(k) = 3k^2 - k$ represents how long it takes Mr. Brust to clean his house where h is measured in hours and k is measured in the number of kids Mr. Brust has. What is the average rate it takes to clean his house if he has between 1 and 4 kids?

Example 3: Find the average rate of change for $f(x) = x^2 - 4x + 1$ on the interval [x, x + h].

Slope of the Secant Line:

Given a function f, the equation for the slope of the secant line is

$$\frac{f(x+h)-f(x)}{(x+h)-(x)} = \frac{f(x+h)-f(x)}{h}$$

2.1 Average Rate of Change

Calculus Name:

Practice

Find the average rate of change for each function on the given interval. On the grid provided, sketch the function and draw the secant line.

1.
$$f(x) = x^2 - 2$$
; $[-1, 3]$

2.
$$g(x) = 4 - x^2$$
; [1,2]

3.
$$h(x) = \sqrt{x+5} + 1$$
; [-1,4]

Find the average rate of change for each function on the given interval.

4.
$$g(r) = 2r^2 + r - 1$$
; [0,1]

5.
$$s(t) = \frac{1}{t-1}$$
; [-5,-2]

6.
$$a(x) = \ln x$$
; [1, e]

Find the average rate of change for each function on the given interval. Use appropriate units.

7.
$$s(t) = -t^2 - t + 4$$
; [1, 5]
 t represents seconds
 s represents feet

8.
$$A(t) = 2^t$$
; [2,4] t represents years A represents dollars

9.
$$n(m) = \tan m + 4$$
; $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$
 n represents nose hairs m represents months

Find the equation of the secant line on the given interval. Put the equation in slope-intercept form.

10. $v(t) = t^3 - t$; [-2, 2]11. $f(x) = \frac{x}{x+2}$; [-1, 1]12. $h(t) = \sin t$; $[\pi, \frac{3\pi}{2}]$

10.
$$v(t) = t^3 - t$$
; $[-2, 2]$

11.
$$f(x) = \frac{x}{x+2}$$
; [-1,1]

12.
$$h(t) = \sin t$$
; $\left[\pi, \frac{3\pi}{2}\right]$

Using the interval [x, x + h], find the expression that represents the slope of the secant line.

13.
$$f(x) = x^2 - x$$

$$14. \ f(x) = \sqrt{x}$$

15.
$$f(x) = 3 - 2x^2$$

16.
$$f(x) = \frac{1}{x}$$

2.1 Average Rate of Change

Test Prep

1. The cost of producing x units of a certain item is $c(x) = 2,000 + 8.6x + 0.5x^2$. What is the average rate of change of c with respect to x when the level of production increases from x = 300 to x = 310 units?

- (A) 313.6
- (B) 310
- (C) 214.2
- (D) 200
- (E) 10

2. Which of the following is true of the function $f(x) = \sqrt{x^2 + 1}$?

(A)
$$\lim_{x \to \infty} (f(x) - x) = 0$$
 and $\lim_{x \to \infty} (f(x) - x) = 0$

(A)
$$\lim_{x \to \infty} (f(x) - x) = 0$$
 and $\lim_{x \to -\infty} (f(x) - x) = 0$ (B) $\lim_{x \to \infty} (f(x) + x) = 0$ and $\lim_{x \to -\infty} (f(x) - x) = 0$

(C)
$$\lim_{x \to \infty} (f(x) - x) = 0$$
 and $\lim_{x \to -\infty} (f(x) + x) = 0$ (D) $\lim_{x \to \infty} (f(x) + x) = 0$ and $\lim_{x \to -\infty} (f(x) + x) = 0$

(D)
$$\lim_{x \to \infty} (f(x) + x) = 0$$
 and $\lim_{x \to -\infty} (f(x) + x) = 0$

(E) None of the above

3. Using the graph, what is the average rate of change of g(t) over the interval $0 \le t \le 5$ days?

Rate of bamboo growth (cm / day)

- (A) $\frac{3}{5}$ cm per day per day
- (B) 1 cm per day per day
- (C) $\frac{7}{5}$ cm per day per day

- (D) 3 cm per day per day
- (E) $\frac{7}{2}$ cm per day per day

4. Which of the following functions has a vertical asymptote at x = 4?

(A)
$$\frac{x+5}{x^2-4}$$

(B)
$$\frac{x^2-16}{x-4}$$

(C)
$$\frac{4x}{x+1}$$

(A)
$$\frac{x+5}{x^2-4}$$
 (B) $\frac{x^2-16}{x-4}$ (C) $\frac{4x}{x+1}$ (D) $\frac{x+6}{x^2-7x+12}$

(E) None of the above

5. A tank holds 10,000 liters of gasoline. At the bottom of the tank, a lever can be turned to allow the gasoline to be dispensed. The tank can be emptied in exactly 40 minutes. Below is a table which gives the volume v of gasoline (in liters) which remain in the tank after t minutes of draining have taken place.

t (minutes)	0	5	10	15	20	25	30	35	40
v (liters)	4700	4100	3200	2400	2000	1400	800	500	0

During which of the following 10-minute intervals is the average rate of gasoline draining from the tank the least?

(A)
$$t = 0$$
 to $t = 10$ minutes

(B)
$$t = 10$$
 to $t = 20$ minutes

(B)
$$t = 10$$
 to $t = 20$ minutes (C) $t = 15$ to $t = 25$ minutes

(D)
$$t = 25$$
 to $t = 35$ minutes

(E)
$$t = 30$$
 to $t = 40$ minutes