#### Calculus

Write your questions and thoughts here!

# 2.3 Differentiability

Name:

A graph of a function is shown below. Write down its equation on line #1.

**Notes** 



- 1. *y* = \_\_\_\_\_
- 2. *y* = \_\_\_\_\_
- 3. *y* = \_\_\_\_\_

### **Differentiability:**

The derivative exists for each point in the domain. The graph must be a smooth line or curve for the derivative to exist. In other words, the graph looks like a line if you zoom in ( ).

The derivative \_\_\_\_\_ where the function has a

- 1.
- 2.
- 3.

| True or False                         | True or False                         |
|---------------------------------------|---------------------------------------|
| Differentiability implies continuity. | Continuity implies differentiability. |

### Mean Value Theorem:

If a function f is differentiable (and thereby continuous) over the interval \_\_\_\_\_, then there exists a point \_\_\_ within that open interval where the instantaneous rate of change equals the average rate of change over the interval.



# 2.3 Differentiability

Given f(x) and f'(x) on a given interval [a,b], find a value c that satisfies the Mean Value Theorem.

1. 
$$f(x) = -2x^2 + 16x - 26$$
;  $4 \le x \le 6$   
 $f'(x) = -4x + 16$ 

#### **Derivatives and Calculators:**

Using the calculator to find the value of the derivative at a point.

2. Find the value of 
$$f'(0.57)$$
 if  $f(x) = \frac{x^3}{\ln x}$ 

### Graph of a function f and its derivative f'

Focus on the \_\_\_\_\_ of f. The \_\_\_\_\_ of f is the \_\_\_\_\_ of f'.



### 2.3 Differentiability

**Practice** 

Given f(x) and f'(x) on a given interval [a, b], find a value c that satisfies the Mean Value Theorem.

1. 
$$f(x) = -x^2 + 4x - 2$$
;  $[-1, 2]$   
 $f'(x) = -2x + 4$ 

2. 
$$f(x) = \frac{x^2}{2} + 4x + 7$$
;  $[-7, -3]$   
 $f'(x) = x + 4$ 

3. 
$$f(x) = -2x^2 + 12x - 15$$
;  
[2, 4]  
 $f'(x) = -4x + 12$ 

4. 
$$f(x) = x^3 - 12x$$
; [-2,2]  
 $f'(x) = 3x^2 - 12$ 

5. 
$$f(x) = \sin(2x); \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$$
$$f'(x) = 2\cos(2x)$$

6. 
$$f(x) = x^3 + 24x - 16$$
; [0, 4]  
 $f'(x) = 3x^2 + 24$ 

7. 
$$f(x) = \sqrt{9 - x^2}$$
; [0,3]  
 $f'(x) = \frac{-2x}{\sqrt{9 - x^2}}$ 

8. 
$$f(x) = \sin x + \cos x$$
;  $[0, 2\pi]$   
 $f'(x) = \cos x - \sin x$ 

9. 
$$f(x) = (x^2 - 2x)e^x$$
; [0,2]  
 $f'(x) = (x^2 - 2)e^x$ 

Match each function with the graph of its derivative.

| Fund        | ction                                        | aph of its derivative. | ative       |             |
|-------------|----------------------------------------------|------------------------|-------------|-------------|
| 10.         | 11.                                          | 10                     | A           | В           |
|             | f(x)                                         | 10                     | f'(x)       | f'(x)       |
| f(x)        |                                              | 11                     | ,           |             |
| 12.         | 13.                                          | 12                     | C f'(x)     | D           |
|             | f(x)                                         | 13                     |             | ,           |
| 14.         | 15. f(x)                                     | 14                     | E f'(x)     | f '(x)      |
|             |                                              | 15                     |             |             |
| 16. f(x)    | $\begin{array}{c c} 17. \\ f(x) \end{array}$ | 16                     | G $f'(x)$   | H     f'(x) |
|             |                                              | 17                     |             |             |
| 18. f(x)    | 19.   f(x)                                   | 18                     | f'(x)       | J f'(x)     |
|             |                                              | 19                     |             |             |
| 20.         | 21. f(x)                                     | 20                     | K f'(x)     | f'(x)       |
| f(x)        |                                              | 21                     |             |             |
| 22.         | 23. f(x)                                     | 22                     | M     f'(x) | N           |
| f(x)        |                                              | 23                     |             |             |
| 24.<br>f(x) | 25. f(x)                                     | 24                     | O f'(x)     | P           |
|             |                                              | 25                     |             | f'(x)       |

Using a calculator find the value of the derivative at a given point. DON'T show any work. You should be able to quickly find the answer with a calculator.

| 26. | f(x) | $= x^2$ | +5x |
|-----|------|---------|-----|
|     |      |         |     |

$$27. \ f(x) = \csc 5x$$

$$28. \ f(x) = \ln x$$

$$f'(1.98) =$$

$$f'\left(\frac{\pi}{2}\right) =$$

$$f'(205) =$$

29. 
$$f(x) = \frac{1}{x}$$

$$30. \ f(x) = e^{7x}$$

$$31. \ f(x) = 8x^2 - 5x^3$$

$$f'(\sqrt{2}) =$$

$$f'(1.5) =$$

$$f'\left(\frac{1}{3}\right) =$$

## 2.3 Differentiability

**Test Prep** 

1. f is continuous for  $a \le x \le b$  but not differentiable for some c such that a < c < b. Which of the following could be true?

- (A) x = c is a vertical asymptote of the graph of f.
- (B)  $\lim_{x \to c} f(x) \neq f(c)$
- (C) The graph of f has a cusp at x = c.

(D) f(c) is undefined.

(E) None of the above

Questions 2 and 3 refer to the graph below.



2. The graph of f(x), shown above, consists of a semicircle and two line segments. f'(1) =

- (A) -1
- (B)  $-\frac{1}{\sqrt{3}}$  (C)  $\frac{1}{\sqrt{3}}$
- (D) 1
- (E)  $\sqrt{3}$

3. For which values of x does f'(x) = 0?

(A) 0 only

(B) 2 only

(C) 0 and 4 only

- (D) -2, 2, and 6 only
- (E) -2, 0, 2, 4, and 6

| 4. | f is a differentiable function and $f(0) = -1$ and $f(4) = 3$ , then which of the following must b | e |
|----|----------------------------------------------------------------------------------------------------|---|
|    | ie?                                                                                                |   |

- I. There exists a c in [0,4] where f(c) = 0.
- II. There exists a c in [0,4] where f'(c) = 0.
- III. There exists a c in [0,4] where f'(c) = 1.
- (A) I only

(B) II only

(C) I and II only

- (D) I and III only
- (E) I, II, and III

5. If  $f'(x) = \tan^{-1}(x^3 - x)$ , at how many points is the tangent line to the graph of y = f(x) parallel to the line y = 2x?



- (A) None
- (B) One
- (C) Two
- (D) Three
- (E) Infinitely many

6. 
$$\lim_{x \to 0} \frac{\sin^3(3x)}{x^3} =$$

- (A) 0
- (B) 1
- (C) 3
- (D) 9
- (E) 27