3.1 Power Rule

NOTES

(CALCULUS	N
	Write your questions here!	
		P

lotation f'

f'(x)

y'

 $\frac{dy}{dx}$

POWER RULE

 $x^n =$

Find the derivative of the following. $f(x) = 3x^7 - 4x^5 - \frac{1}{3}x^3 + x^2 - 3x + 7$

$$y = 2x^{-3} + 4x + \pi$$

Rewrite and then take the derivative.

$$y = \sqrt[3]{x^7} - \sqrt{x} + 2\sqrt[5]{x^2}$$

$$g(x) = \frac{1}{x} + \frac{4}{x^2} - \frac{1}{(3x)^2}$$

$$f(x) = \frac{-16x^2 + 5x - 1}{2x}$$

Evaluate

$$f(x) = \frac{1}{2}x^4 - 4x^{-2} + e$$

Find $f'(3)$
Find $\frac{dy}{dx}\Big|_{x=4}$

Higher Order Derivatives

$$f(x) = x^{7} - 2x^{4} + 5x^{2} - 3x + 9$$

$$y = \sqrt{x} + x^{-2}$$

$$f'(x) =$$

$$f''(x) =$$

$$f'''(x) =$$

$$\frac{dy}{dx} =$$

$$\frac{d^{2}y}{dx^{2}} =$$

Find Derivative on the Calculator

$$f(x) = \frac{1}{2}x\sqrt{2x - 1}$$
$$f'(4) =$$
$$f'(e) =$$

 $f(\theta) = 1 + \csc \theta$ $f'(\pi) =$ $f'\left(\frac{\pi}{2}\right) =$

Derivative means...

Slope at a point Given $y = \frac{1}{2}x^4 - x + 2$ find the slope at x = 2

Slope of the tangent line

Write the equation of the line tangent to $y = \frac{1}{2}x^4 - x + 2$ at x = 2

Instantaneous rate of change

What is the instantaneous rate of change at 3 seconds? $s(t) = -4.9t^2 + 40t + 6$

Normal Line

Write the equation of the normal line at x = 3 and then graph it!

$$f(x) = x^3 - 4x^2 + x + 3$$

Derivative Rules

Constant Rule $\frac{d}{dx}c = 0$ Power Rule $\frac{d}{dx}x^n = nx^{n-1}$ Constant Multiple Rule $\frac{d}{dx}(cu) = c\frac{du}{dx}$ Sum/Difference Rule $\frac{d}{dx}(u \pm v) = \left(\frac{du}{dx} \pm \frac{dv}{dx}\right)$

SUMMARY:

Now, summarize your notes here!

3.1 Power Rule

PRACTICE

Find the derivative of the following.					
1. $f(x) = 2x^3 - 4x + 5$	2. $y = 3x^{100} - 2x^8 - 7x$	3. $g(x) = 5x^{-2} - \frac{1}{2}x^4$			
		2			
4. $h(x) = \frac{x^6}{3} + 6x^{2/3} - 4x^{1/2} + 2$	5. $f(x) = \frac{1}{x^3} + \frac{12}{x}$	6. $y = \frac{3}{x^{-2}} - \frac{1}{(6x)^2}$			
7. $f(x) = \sqrt{x} + 3\sqrt[3]{x} + 2$	$8. y = \sqrt[3]{x^2} + 8\sqrt[4]{x^7}$	9. $f(x) = \frac{1}{\sqrt{x}} + \frac{3}{6x}$			
		$\sqrt{x} + 6x$			
10. $f(x) = \frac{1}{\sqrt{x}} + \frac{3}{\sqrt[5]{x^2}}$	11. $s(t) = -16t^2 + 40t + 5$	12. $y = \pi x^2 - \pi$			
13. $V(r) = \frac{4}{3}\pi r^3$	14. $f(x) = \frac{2x^3 + 4x - 5}{x}$	$15. \ g(x) = \frac{6x^3 + 4x^2 - 9x}{3}$			
3	x	3			
Find the derivatives of the following					
16. $f(x) = 3x^7 - 4x^3 + 5x + 7$	17. $y = 4\sqrt{x} + e$	18. $y = \frac{1}{x^3} - \frac{1}{2}x^4 + ex^2$			
f'(x) =		x ³ 2			
	$\left \frac{dy}{dx} \right =$	<i>y</i> ′ =			
$f^{\prime\prime}(x) =$					
f'''(x) =	$\frac{d^2y}{dx^2} =$	<i>y''</i> =			
$f^{(4)}(x) =$	dx^2	<i>y'''</i> =			

Given $f(x) = 3x^2 - x + 2$, $g(x) =$	$\frac{1}{x^3} + e^2$, and $h(x) = \sqrt{2}$, find the following.	
19. <i>f</i> ′(2) =	20. $g'''(-3) =$	21. 2 <i>h</i> ′′(4) =	
22. Find the slope of $f(x)$ at $x = 3$.	23. At what value of x is		ope of the tangent at the point (16, 4) ?
Find the equation for the slope of the	e line tangent to the given	function.	
25. $f(x) = 2\sqrt{x} - \pi^2$	26. $y = -2x^3 + \frac{1}{2}x^2 - $	$7x + 5$ 27. $g(x) = \frac{1}{x^2}$ -	$\frac{1}{2x}$
Is the slope of the tangent line positi	ve negative or zero at th	a given noint?	
28. $f(x) = \frac{4x^3 - 16x^2}{2x}$ at $x = 2$	29. $y = 2x^4 + 5x^3$ at x		$-4x^{-1}$ at $x = 8$
Write the equation of the tangent lin	e and the normal line at t	he point given.	
31. $f(x) = 3\sqrt{x} + 4$ at $x = 4$	32. :	$y = \frac{x^2 + 3x - 4}{2}$ at $x = 8$	

31.
$$f(x) = 3\sqrt{x} + 4$$
 at $x = 4$

32.
$$y = \frac{x^2 + 3x - 4}{2}$$
 at $x = 8$

MULTIPLE CHOICE

- 1. Let $f(x) = x^3 + 2x 5$. What is the x-coordinate of a point where the instantaneous rate of change of f is the same as the average rate of change of *f* on the interval -1 < x < 1?
 - (A) $\frac{\sqrt{3}}{3}$
 - (B) $\frac{1}{2}$

 - (C) 0
 - (D) $\frac{1}{3}$
 - (E) $\sqrt{3}$

2. Given $g(x) = 2x^5 + \frac{b}{x^2}$ where b is a constant, find the value of b if g'(2) = 180.

- (A) 10
- (B) 20
- (C) -40
- (D) -80
- (E) none of the above
- 3. Given $f'(x) = \frac{1}{x}$ and f(2) = 5, write an equation for the line which is tangent to the graph of f(x) at the point where x = 2.
 - (A) $y = \frac{1}{2}x \frac{1}{2}$ (B) $y = \frac{1}{5}x + 5$ (C) $y = \frac{1}{2}x + 4$ (D) $y = \frac{1}{5}x - \frac{23}{5}$ (E) $y = \frac{1}{2}x + 5$
- 4. If the line normal to the graph of f at the point (1,2) passes through the point (-1,1), then which of the following gives the value of f'(1) = ?
 - (A) -2 (B) 2 (C) $-\frac{1}{2}$
 - (D) $\frac{1}{2}$
 - (E) 3

You are allowed to use a graphing calculator for #5

5. Which of the following is an equation of the line tangent to the graph of $f(x) = x^6 - x^4$ at the point where f'(x) = -1?

(A) y = -x - 1.031

- (B) y = -x 0.836
- (C) y = -x + 0.836
- (D) y = -x + 0.934
- (E) y = -x + 1.031

FREE RESPONSE

Your score: _____ out of 5

Use the table to answer the questions below.

x	f(x)	f'(x)	$f^{\prime\prime}(x)$	g(x)	g'(x)	$g^{\prime\prime}(x)$
0	-10	1	2	-7	3	-4
2	-4	5	2	-1	7	8
5	20	11	2	83	58	26

1. Find the average rate of change of *f* over the interval $0 \le x \le 2$. Find the value of *x* at which the instantaneous velocity of *g* is equal to the average rate of change of *f* over the interval $0 \le x \le 2$.

2. Write the equation of the line normal to g(x) at the point where x = 2.

3. (f+g)''(5) =

4. If B = f(x) - 2g(x), then B'(0) =