3.1 Power Rule

CALCULUS

Write your questions here!
$\sqrt{7}$

Notation

f^{\prime}

$$
f^{\prime}(x)
$$

$$
y^{\prime}
$$

$$
\frac{d y}{d x}
$$

POWER RULE

$$
x^{n}=
$$

Find the derivative of the following.

$$
f(x)=3 x^{7}-4 x^{5}-\frac{1}{3} x^{3}+x^{2}-3 x+7
$$

$$
y=2 x^{-3}+4 x+\pi
$$

Rewrite and then take the derivative.

$$
y=\sqrt[3]{x^{7}}-\sqrt{x}+2 \sqrt[5]{x^{2}}
$$

$$
g(x)=\frac{1}{x}+\frac{4}{x^{2}}-\frac{1}{(3 x)^{2}}
$$

$$
f(x)=\frac{-16 x^{2}+5 x-1}{2 x}
$$

Evaluate

$$
f(x)=\frac{1}{2} x^{4}-4 x^{-2}+e \quad y=\frac{1}{\sqrt{x}}+4 x
$$

Find $f^{\prime}(3)$
Find $\left.\frac{d y}{d x}\right|_{x=4}$

Higher Order Derivatives

$$
\begin{array}{l|l}
f(x)=x^{7}-2 x^{4}+5 x^{2}-3 x+9 & y=\sqrt{x}+x^{-2} \\
f^{\prime}(x)= & \frac{d y}{d x}= \\
f^{\prime \prime}(x)= & \frac{d^{2} y}{d x^{2}}= \\
f^{\prime \prime \prime}(x)= &
\end{array}
$$

Find Derivative on the Calculator

$$
\begin{aligned}
f(x) & =\frac{1}{2} x \sqrt{2 x-1} \\
f^{\prime}(4) & = \\
f^{\prime}(e) & =
\end{aligned}
$$

$$
\begin{aligned}
f(\theta) & =1+\csc \theta \\
f^{\prime}(\pi) & = \\
f^{\prime}\left(\frac{\pi}{2}\right) & =
\end{aligned}
$$

Derivative means...

Slope at a point
Given $y=\frac{1}{2} x^{4}-x+2$ find the slope at $x=2$

Slope of the tangent line

Write the equation of the line tangent to $y=\frac{1}{2} x^{4}-x+2$ at $x=2$

Instantaneous rate of change

What is the instantaneous rate of change at 3 seconds? $s(t)=-4.9 t^{2}+40 t+6$

Normal Line

Write the equation of the normal line at $x=3$ and then graph it!

$$
f(x)=x^{3}-4 x^{2}+x+3
$$

Derivative Rules

Constant Rule $\quad \frac{d}{d x} c=0$

Power Rule

Constant Multiple Rule $\quad \frac{d}{d x}(c u)=c \frac{d u}{d x}$
Sum/Difference Rule $\quad \frac{d}{d x}(u \pm v)=\left(\frac{d u}{d x} \pm \frac{d v}{d x}\right)$

SUMMARY:

Find the derivative of the following.

1. $f(x)=2 x^{3}-4 x+5$	2. $y=3 x^{100}-2 x^{8}-7 x$	3. $g(x)=5 x^{-2}-\frac{1}{2} x^{4}$
4. $h(x)=\frac{x^{6}}{3}+6 x^{2 / 3}-4 x^{1 / 2}+2$	5. $f(x)=\frac{1}{x^{3}}+\frac{12}{x}$	6. $y=\frac{3}{x^{-2}}-\frac{1}{(6 x)^{2}}$
7. $f(x)=\sqrt{x}+3 \sqrt[3]{x}+2$	8. $y=\sqrt[3]{x^{2}}+8 \sqrt[4]{x^{7}}$	
10. $f(x)=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt[5]{x^{2}}}$	11. $s(t)=-16 t^{2}+40 t+5$	9. $f(x)=\frac{1}{\sqrt{x}}+\frac{3}{6 x}$
$13 . V(r)=\frac{4}{3} \pi r^{3}$	$14 . f(x)=\frac{2 x^{3}+4 x-5}{x}$	$12 . y=\pi x^{2}-\pi$

Find the derivatives of the following.

16. $f(x)=3 x^{7}-4 x^{3}+5 x+7$ $f^{\prime}(x)=$
$f^{\prime \prime}(x)=$
$f^{\prime \prime \prime}(x)=$
$f^{(4)}(x)=$
17. $y=4 \sqrt{x}+e$
$\frac{d y}{d x}=$
$\frac{d^{2} y}{d x^{2}}=$
18. $y=\frac{1}{x^{3}}-\frac{1}{2} x^{4}+e x^{2}$
$y^{\prime}=$
$y^{\prime \prime}=$
$y^{\prime \prime \prime}=$

Given $f(x)=3 x^{2}-x+2, g(x)=\frac{1}{x^{3}}+e^{2}$, and $h(x)=\sqrt{x}$, find the following.

19. $f^{\prime}(2)=$	20. $g^{\prime \prime \prime}(-3)=$	$21.2 h^{\prime \prime}(4)=$
22. Find the slope of $f(x)$ at $x=3$.	23. At what value of x is $f^{\prime}(x)=0$?	24. What is the slope of the tangent line of $h(x)$ at the point $(16,4) ?$

Find the equation for the slope of the line tangent to the given function.
25. $f(x)=2 \sqrt{x}-\pi^{2}$
26. $y=-2 x^{3}+\frac{1}{2} x^{2}-7 x+5$
27. $g(x)=\frac{1}{x^{2}}-\frac{1}{2 x}$

Is the slope of the tangent line positive, negative, or zero at the given point?
$\begin{aligned} & \text { 28. } f(x)=\frac{4 x^{3}-16 x^{2}}{2 x} \text { at } x=2 \\ & \text { 29. } y=2 x^{4}+5 x^{3} \quad \text { at } x=-2 \\ & \text { Write the equation of the tangent line and the normal line at the point given. }\end{aligned}$ (40.
31. $f(x)=3 \sqrt{x}+4$ at $x=4$
32. $y=\frac{x^{2}+3 x-4}{2}$ at $x=8$

The function is graphed below. Write the equation of the tangent line at the given point and graph it.
33. $f(x)=-x^{2}-2 x-1$ at $x=-2$
34. $y=\frac{x^{3}}{2}-\frac{x^{2}}{2}-x$ at $x=1$

The function is graphed below. Write the equation of the normal line at the given point and graph it.
35. $f(x)=-x^{3}+2 x^{2}-2$ at $x=2$

36. $y=x^{2}+6 x+9$ at $x=-2$

You will need to use a graphing calculator for 37-42

Use the graph to find the derivative of the function at the given value. Round to nearest thousandth.
37. $f(x)=\frac{x^{2}+1}{x-2}$ at $x=6$
38. $y=e^{x}$ at $x=-1$
39. $f(\theta)=2 \sin \theta$ at $\theta=\frac{\pi}{2}$

Write the equation of the tangent line at the point given and sketch the graph. Round to nearest thousandth.
40. $f(x)=-\sqrt{3 x+4}$ at $x=5$
41. $y=\ln (x)+4$ at $x=e$
42. $f(\theta)=\csc \theta+1$ at $\theta=\frac{\pi}{4}$

MULTIPLE CHOICE

1. Let $f(x)=x^{3}+2 x-5$. What is the x-coordinate of a point where the instantaneous rate of change of f is the same as the average rate of change of f on the interval $-1<x<1$?
(A) $\frac{\sqrt{3}}{3}$
(B) $\frac{1}{2}$
(C) 0
(D) $\frac{1}{3}$
(E) $\sqrt{3}$
2. Given $g(x)=2 x^{5}+\frac{b}{x^{2}}$ where b is a constant, find the value of b if $g^{\prime}(2)=180$.
(A) 10
(B) 20
(C) -40
(D) -80
(E) none of the above
3. Given $f^{\prime}(x)=\frac{1}{x}$ and $f(2)=5$, write an equation for the line which is tangent to the graph of $f(x)$ at the point where $x=2$.
(A) $y=\frac{1}{2} x-\frac{1}{2}$
(B) $y=\frac{1}{5} x+5$
(C) $y=\frac{1}{2} x+4$
(D) $y=\frac{1}{5} x-\frac{23}{5}$
(E) $y=\frac{1}{2} x+5$
4. If the line normal to the graph of f at the point $(1,2)$ passes through the point $(-1,1)$, then which of the following gives the value of $f^{\prime}(1)=$?
(A) -2
(B) 2
(C) $-\frac{1}{2}$
(D) $\frac{1}{2}$
(E) 3
5. Which of the following is an equation of the line tangent to the graph of $f(x)=x^{6}-x^{4}$ at the point where $f^{\prime}(x)=-1$?
(A) $y=-x-1.031$
(B) $y=-x-0.836$
(C) $y=-x+0.836$
(D) $y=-x+0.934$
(E) $y=-x+1.031$

FREE RESPONSE

\qquad out of 5
Use the table to answer the questions below.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$	$\boldsymbol{g}^{\prime}(\boldsymbol{x})$	$\boldsymbol{g}^{\prime \prime}(\boldsymbol{x})$
0	-10	1	2	-7	3	-4
2	-4	5	2	-1	7	8
5	20	11	2	83	58	26

1. Find the average rate of change of f over the interval $0 \leq x \leq 2$. Find the value of x at which the instantaneous velocity of g is equal to the average rate of change of f over the interval $0 \leq x \leq 2$.
2. Write the equation of the line normal to $g(x)$ at the point where $x=2$.
3. $(f+g)^{\prime \prime}(5)=$
4. If $B=f(x)-2 g(x)$, then $B^{\prime}(0)=$
