3.2 Product and Quotient Rule

CALCULUS
Write your questions here!

Find the derivative.

$$
f(x)=(x+4)(2 x-5)
$$

PRODUCT RULE

$\frac{d}{d x}(u v)=$

Find the derivative of the following.

$$
f(x)=\left(3 x^{2}+2 x-3\right)(x-1) \quad y=\left(2 x^{-3}+4 x+\pi\right)(4 x+1)
$$

Evaluate

$$
f(x)=\sqrt{x}\left(3 x^{2}-3\right)
$$

Find $f^{\prime}(4)$

Find the derivative.

$$
f(x)=\frac{x-5}{2 x+1}
$$

QUOTIENT RULE

$$
\frac{d}{d x}(u v)=
$$

Find the derivative of the following.

$$
f(x)=\frac{3 x+1}{2 x^{2}}
$$

$$
y=\frac{2 x^{2}}{3 x+1}
$$

Horizontal Tangents

Find all horizontal tangents for $y=\frac{2 x^{2}}{3 x+1}$

Find $f^{\prime}(4)$ given the following:

$$
\begin{gathered}
\begin{array}{c}
g(4)=3 \text { and } g^{\prime}(4)=-2 \\
h(4)=-1 \text { and } h^{\prime}(4)=5
\end{array} \\
f(x)=g(x)-h(x) \quad f(x)=h(x)+2 \quad f(x)=g(x)+2 h(x) \\
f(x)=\frac{h(x)}{g(x)}
\end{gathered}
$$

SUMMARY:

Now,
summarize
your notes
here!

Find the derivative of the following.

1. $f(x)=\frac{5 x-2}{x^{2}+1}$
2. $g(x)=(2 x+1)\left(x^{3}-1\right)$
3. $y=\left(3 x^{2}-2 x\right)\left(x^{2}+3 x-4\right)$
4. $f(t)=\frac{t+1}{\sqrt{t}}$
5. $f(r)=r^{2}\left(5 r^{3}+3\right)$

Find the derivatives of the following.
7. $y=\frac{x}{x-1}$
$\frac{d y}{d x}=$
$\frac{d^{2} y}{d x^{2}}=$
8. $y=x^{-2}\left(e x^{3}+3\right)$
$y^{\prime}=$
$y^{\prime \prime}=$

Given $f(x)=\left(x^{2}-5\right)(3 x+2)$, find the following.
9. $f^{\prime}(2)=$

10 . Find the slope of $f(x)$ at $x=-3$.
11. What is the slope of the tangent line of $f(x)$ at the point $(4,48)$?

Is the slope of the tangent line positive, negative, or zero at the given point?
12. $f(x)=\frac{2-\frac{1}{x}}{x-3}$ at $x=4$
13. $g(x)=(x+1)^{2}$ at $x=-4$

Determine the x-values (if any) at which the function has a horizontal tangent line.
14. $f(x)=\frac{4 x^{3}-10 x^{2}}{2 x} \quad$ 15. $g(x)=\frac{x^{2}}{x+1}$

Write the equation of the tangent line and the normal line at the point given.
16. $f(x)=\frac{x-1}{x+1}$ at $x=2$

Find $\boldsymbol{f}^{\prime}(2)$ given the following.
17. $f(x)=2 g(x)+h(x)$
$g(2)=3$ and $g^{\prime}(2)=-2$
$h(2)=-1$ and $h^{\prime}(2)=4$
18. $f(x)=4-h(x)$
20. $f(x)=g(x) h(x)$

MULTIPLE CHOICE

1. Suppose $f(x)$ is a differentiable function with $f(1)=2, f(2)=-2, f^{\prime}(2)=5, f^{\prime}(1)=3$, and $f(5)=1$. An equation of a line tangent to the graph of f is
(A) $y-3=2(x-1)$
(B) $y-2=(x-1)$
(C) $y-3=5(x-1)$
(D) $y-2=3(x-1)$
(E) $y-1=5(x-2)$
2. Let f and g be differentiable functions with the following properties:
I. $f(x)<0$ for all x
II. $g(5)=2$

If $h(x)=\frac{f(x)}{g(x)}$ and $h^{\prime}(x)=\frac{f^{\prime}(x)}{g(x)}$, then $g(x)=$
(A) $\frac{1}{f^{\prime}(x)}$
(B) $f(x)$
(C) $-f(x)$
(D) 0
(E) 2
3. At what point on the graph of $y=\frac{1}{2} x^{2}-\frac{3}{2}$ is the tangent line parallel to the line $4 x-8 y=5$?
(A) $\left(\frac{1}{2},-\frac{3}{8}\right)$
(B) $\left(\frac{1}{2},-\frac{11}{8}\right)$
(C) $\left(2, \frac{3}{8}\right)$
(D) $\left(2, \frac{1}{2}\right)$
(E) $\left(-\frac{1}{2},-\frac{11}{8}\right)$
4. If $f(x)$ is continuous and differentiable and $f(x)=\left\{\begin{array}{ll}a x^{4}+5 x ; & x \leq 2 \\ b x^{2}-3 x ; & x>2\end{array}\right.$, then find the value of b.
(A) 0.5
(B) 0
(C) 2
(D) 6
(E) There is no value of b.
5. Which of the following functions are continuous but not differentiable at $x=0$?

$$
\begin{array}{rc}
\text { I. } & f(x)=x^{\frac{1}{3}} \\
\text { II. } & g(x)=|x| \\
\text { III. } & h(x)=x|x|
\end{array}
$$

(A) I only
(B) II only
(C) I and II
(D) II and III
(E) I, II, and III

FREE RESPONSE

Your score: \qquad out of 4

1. A continuous function g is defined on the closed interval $-8 \leq x \leq 6$ and is shown above.
(a) Find the approximate value of $g^{\prime}(4)$. Show the computations that lead to your answer.
(b) Let h be the function defined by $h(x)=\frac{g(x)}{x^{2}+1}$. Find $h^{\prime}(-2)$.
