3.2 Product and Quotient Rule

$$f(x) = \frac{h(x)}{g(x)} \qquad \qquad f(x) = g(x)h(x)$$

PRACTICE

Find the derivative of the following.		
1. $f(x) = \frac{5x-2}{x^2+1}$	2. $g(x) = (2x + 1)(x^3 - 1)$	
x ² +1		
3. $y = (3x^2 - 2x)(x^2 + 3x - 4)$	$6r^2 + 3r - 5$	
$5. \ y = (3x^2 - 2x)(x^2 + 3x - 4)$	4. $h(x) = \frac{6x^2 + 3x - 5}{3x}$	
$5. f(t) = \frac{t+1}{\sqrt{t}}$	6. $f(r) = r^2(5r^3 + 3)$	
\sqrt{t}		
Find the derivatives of the following.		
$7. y = \frac{x}{x-1}$	8. $y = x^{-2}(ex^3 + 3)$	
dy	y' =	
$\frac{dy}{dx} =$	<i>y</i>	
$d^2 y$		
$\frac{d^2y}{dx^2} =$	$y^{\prime\prime} =$	
	I	

Given $f(x) = (x^2 - 5)(3x + 2)$, find the following.			
9. <i>f</i> ′(2) =	10. Find the slope of $f(x)$ at $x = -3$.	11. What is the slope of the tangent line of $f(x)$ at the point (4, 48) ?	
Is the slope of the tangent line positive, negative, or zero at the given point?			

12.
$$f(x) = \frac{2 - \frac{1}{x}}{x - 3}$$
 at $x = 4$
13. $g(x) = (x + 1)^2$ at $x = -4$

Determine the *x*-values (if any) at which the function has a horizontal tangent line.

14. $f(x) = \frac{4x^3 - 10x^2}{2x}$ 15. $g(x) = \frac{x^2}{x+1}$

Write the equation of the tangent line and the normal line at the point given.

16.
$$f(x) = \frac{x-1}{x+1}$$
 at $x = 2$

Find $f'(2)$ given the following.			
	17. $f(x) = 2g(x) + h(x)$	18. $f(x) = 4 - h(x)$	
g(2) = 3 and $g'(2) = -2h(2) = -1$ and $h'(2) = 4$			
	19. $f(x) = \frac{g(x)}{h(x)}$	20. f(x) = g(x)h(x)	

TEST PREP

MULTIPLE CHOICE

- 1. Suppose f(x) is a differentiable function with f(1) = 2, f(2) = -2, f'(2) = 5, f'(1) = 3, and f(5) = 1. An equation of a line tangent to the graph of f is
 - (A) y-3 = 2(x-1)(B) y-2 = (x-1)(C) y-3 = 5(x-1)(D) y-2 = 3(x-1)(E) y-1 = 5(x-2)
- 2. Let f and g be differentiable functions with the following properties:

1.
$$f(x) < 0$$
 for all x
II. $g(5) = 2$
If $h(x) = \frac{f(x)}{g(x)}$ and $h'(x) = \frac{f'(x)}{g(x)}$, then $g(x) =$
(A) $\frac{1}{f'(x)}$
(B) $f(x)$
(C) $-f(x)$
(D) 0
(E) 2

- 3. At what point on the graph of $y = \frac{1}{2}x^2 \frac{3}{2}$ is the tangent line parallel to the line 4x 8y = 5?
 - (A) $\left(\frac{1}{2}, -\frac{3}{8}\right)$ (B) $\left(\frac{1}{2}, -\frac{11}{8}\right)$ (C) $\left(2, \frac{3}{8}\right)$ (D) $\left(2, \frac{1}{2}\right)$ (E) $\left(-\frac{1}{2}, -\frac{11}{8}\right)$
- 4. If f(x) is continuous and differentiable and $f(x) = \begin{cases} ax^4 + 5x; & x \le 2\\ bx^2 3x; & x > 2 \end{cases}$, then find the value of *b*.
 - (A) 0.5
 - (B) 0
 - (C) 2
 - (D) 6
 - (E) There is no value of b.

You are allowed to use a graphing calculator for #5

- 5. Which of the following functions are continuous but not differentiable at x = 0?
 - I. $f(x) = x^{\frac{1}{3}}$ II. g(x) = |x|III. h(x) = x|x|
 - (A) I only
 - (B) II only
 - (C) I and II
 - (D) II and III
 - (E) I, II, and III

- 1. A continuous function g is defined on the closed interval $-8 \le x \le 6$ and is shown above.
 - (a) Find the approximate value of g'(4). Show the computations that lead to your answer.

(b) Let *h* be the function defined by $h(x) = \frac{g(x)}{x^2+1}$. Find h'(-2).