3.4 Chain Rule

NOTES

3.4 Chain Rule

Find the derivative of the following. 1. $f(x) = (3x^2 - 1)^5$ 2. $f(r) = \sqrt[3]{5r^2 - 2r + 1}$ 3. $y = \frac{1}{(7x^2 - 1)^2}$ 4. $h(x) = 2\sqrt{3x^2 - 5}$ 5. $f(x) = (\pi x - 1)^2 + 7$ 6. $g(x) = 4x - \frac{3}{\sqrt{2x+1}}$

Find the derivatives of the following.		
$7. y = x\sqrt{2x-1}$	8. $y = (x^3 + e)^{-2}$	
9. $g(x) = 2x(x^3 - 1)^2$	10. $h(x) = \frac{6x^2 - 5}{\sqrt{2 - 5x}}$	
Evaluate the derivative at a point.		
11. $f(x) = \sqrt{1 + (x^2 - 1)^3}$	12. $y = \frac{x+1}{\sqrt{2x-1}}$	
f'(2) =	$\left. \frac{dy}{dx} \right _{x=1}$	
Write the equation of the tangent line and the normal line at the point given.		

13. $f(x) = \sqrt{x^2 - 9}$ at x = 5

14. $f(x) = \frac{1}{(3-2x)^2}$ at x = 1

Particle Motion

15. The position of a particle moving along a coordinate line is $s = \sqrt{1 + 4t}$, with s in meters and t in seconds. Find the particle's velocity at t = 6.

16. If $s = \frac{t}{t^2+5}$ is the position function of a moving particle for $t \ge 0$, then at what instant of time will the particle start to reverse its direction of motion and where is it at the instant?

Find $f'(5)$ given the following.		
	17. $f(x) = g(x) + h(x)$	18. $f(x) = \left(h(x)\right)^2$
	19. $f(x) = \sqrt{g(x)}$	20. f(x) = 2g(x)h(x)
g(5) = 9 and $g'(5) = 6h(5) = 5$ and $h'(5) = -4$		
	$21. f(x) = \frac{1}{h(x)}$	22. $f(x) = g(h(x))$

MULTIPLE CHOICE

- 1. Let $f(x) = x \cdot g(h(x))$ where g(4) = 2, g'(4) = 3, h(3) = 4, and h'(3) = -2. Find f'(3).
 - (A) 18
 - (B) -16
 - (C) -7
 - (D) 7
 - (E) 11
- 2. Let m and b be real numbers and let the function f be defined by

$$f(x) = \begin{cases} 1 + 3bx + 2x^2 & \text{for } x \le 1 \\ mx + b & \text{for } x > 1 \end{cases}$$

If *f* is both continuous and differentiable at x = 1, then

- (A) m = 1, b = 1
- (B) m = 1, b = -1
- (C) m = -1, b = 1
- (D) m = -1, b = -1
- (E) none of the above
- 3. A particle moves on the *x*-axis with position defined by: $x(t) = t^3 6t^2 + 2t + 1$ where $t \ge 0$. What is the velocity of the particle when its acceleration is zero?
 - (A) –11
 - (B) -10
 - (C) -1
 - (D) 2
 - (E) 50

4. If
$$f(x) = \sqrt{1 + \sqrt{x}}$$
, find $f'(x)$.

(A) $\frac{-1}{4\sqrt{x}\sqrt{1+\sqrt{x}}}$ (B) $\frac{1}{2\sqrt{x}\sqrt{1+\sqrt{x}}}$ (C) $\frac{1}{4\sqrt{1+\sqrt{x}}}$ (D) $\frac{1}{4\sqrt{x}\sqrt{1+\sqrt{x}}}$ (E) $\frac{-1}{2\sqrt{x}\sqrt{1+\sqrt{x}}}$

5. If
$$f(x) = \left(1 + \frac{x}{20}\right)^5$$
, find $f''(40)$.

- (A) 0.068
- (B) 1.350
- (C) 5.400
- (D) 6.750
- (E) 540.000

FREE RESPONSE

Your score: _____ out of 4

1. The graph of the function f, shown below, consists of three line segments. Suppose g(x) is a function whose derivative is f.

(a) Suppose y = x + 7 is the equation for the line tangent to the graph of g(x) at x = -3. Let *h* be the function defined by $h(x) = (g(x))^2$. Find h'(-3).

- (b) Describe the shape of the graph of g(x) near x = 2.
- (c) Give a piecewise defined equation for g''(x).