

Write your questions here!

Find the derivative.

$$
f(x)=(3 x+1)^{2}
$$

CHAIN RULE

$\frac{d}{d x} f(g(x))=$

Find the derivative of the following.

$f(x)=\left(x^{2}-5\right)^{4}$	$f(x)=\sqrt{4 x-3}$
$y=2(4 x-7)^{3}$	$f(x)=\frac{1}{\sqrt[3]{5 x-3}}$

Evaluate

$$
f(x)=2 x \sqrt{1-x}
$$

Find $f^{\prime}(-3)$

Find the derivative.

$$
f(x)=\left(\frac{t^{2}+1}{2 t-5}\right)^{3}
$$

Find $f^{\prime}(4)$ given the following:

$$
\begin{gathered}
\boldsymbol{g}(\mathbf{4})=\mathbf{4} \text { and } \boldsymbol{g}^{\prime}(\mathbf{4})=-\mathbf{2} \\
\boldsymbol{h}(\mathbf{4})=\mathbf{9} \text { and } \boldsymbol{h}^{\prime}(\mathbf{4})=\mathbf{5} \\
\boldsymbol{f}(\boldsymbol{x})=(g(x))^{2} \quad \left\lvert\, \begin{array}{c}
\boldsymbol{f}(\boldsymbol{x})=\sqrt{h(x)}
\end{array} \quad \boldsymbol{f}(\boldsymbol{x})=h(g(x))\right.
\end{gathered}
$$

SUMMARY:

3.4 Chain Rule

Find the derivative of the following.

1. $f(x)=\left(3 x^{2}-1\right)^{5}$
2. $f(r)=\sqrt[3]{5 r^{2}-2 r+1}$
3. $y=\frac{1}{\left(7 x^{2}-1\right)^{2}}$
4. $h(x)=2 \sqrt{3 x^{2}-5}$
5. $f(x)=(\pi x-1)^{2}+7$
6. $g(x)=4 x-\frac{3}{\sqrt{2 x+1}}$

Find the derivatives of the following.

7. $y=x \sqrt{2 x-1}$
8. $y=\left(x^{3}+e\right)^{-2}$
9. $g(x)=2 x\left(x^{3}-1\right)^{2}$
10. $h(x)=\frac{6 x^{2}-5}{\sqrt{2-5 x}}$

Evaluate the derivative at a point.

11. $f(x)=\sqrt{1+\left(x^{2}-1\right)^{3}}$

$$
f^{\prime}(2)=
$$

12. $y=\frac{x+1}{\sqrt{2 x-1}}$ $\left.\frac{d y}{d x}\right|_{x=1}$

Write the equation of the tangent line and the normal line at the point given.

13. $f(x)=\sqrt{x^{2}-9}$ at $x=5$
14. $f(x)=\frac{1}{(3-2 x)^{2}}$ at $x=1$

Particle Motion

15. The position of a particle moving along a coordinate line is $s=\sqrt{1+4 t}$, with s in meters and t in seconds. Find the particle's velocity at $t=6$.
16. If $s=\frac{t}{t^{2}+5}$ is the position function of a moving particle for $t \geq 0$, then at what instant of time will the particle start to reverse its direction of motion and where is it at the instant?

Find $f^{\prime}(5)$ given the following.

	17. $f(x)=g(x)+h(x)$	18. $f(x)=(h(x))^{2}$
	19. $f(x)=\sqrt{g(x)}$	
$\boldsymbol{g}(\mathbf{5})=\mathbf{9}$ and $\boldsymbol{g}^{\prime}(\mathbf{5})=\mathbf{6}$ $\boldsymbol{h}(\mathbf{5})=\mathbf{5}$ and $\boldsymbol{h}^{\prime}(\mathbf{5})=-\mathbf{4}$		$20 . f(x)=2 g(x) h(x)$
	21. $f(x)=\frac{1}{h(x)}$	$22 . f(x)=g(h(x))$

MULTIPLE CHOICE

1. Let $f(x)=x \cdot g(h(x))$ where $g(4)=2, g^{\prime}(4)=3, h(3)=4$, and $h^{\prime}(3)=-2$. Find $f^{\prime}(3)$.
(A) -18
(B) -16
(C) -7
(D) 7
(E) 11
2. Let m and b be real numbers and let the function f be defined by

$$
f(x)= \begin{cases}1+3 b x+2 x^{2} & \text { for } x \leq 1 \\ m x+b & \text { for } x>1\end{cases}
$$

If f is both continuous and differentiable at $x=1$, then
(A) $m=1, b=1$
(B) $m=1, b=-1$
(C) $m=-1, b=1$
(D) $m=-1, b=-1$
(E) none of the above
3. A particle moves on the x-axis with position defined by: $x(t)=t^{3}-6 t^{2}+2 t+1$ where $t \geq 0$. What is the velocity of the particle when its acceleration is zero?
(A) -11
(B) -10
(C) -1
(D) 2
(E) 50
4. If $f(x)=\sqrt{1+\sqrt{x}}$, find $f^{\prime}(x)$.
(A) $\frac{-1}{4 \sqrt{x} \sqrt{1+\sqrt{x}}}$
(B) $\frac{1}{2 \sqrt{x} \sqrt{1+\sqrt{x}}}$
(C) $\frac{1}{4 \sqrt{1+\sqrt{x}}}$
(D) $\frac{1}{4 \sqrt{x} \sqrt{1+\sqrt{x}}}$
(E) $\frac{-1}{2 \sqrt{x} \sqrt{1+\sqrt{x}}}$
5. If $f(x)=\left(1+\frac{x}{20}\right)^{5}$, find $f^{\prime \prime}(40)$.
(A) 0.068
(B) 1.350
(C) 5.400
(D) 6.750
(E) 540.000

FREE RESPONSE

\qquad out of 4

1. The graph of the function f, shown below, consists of three line segments. Suppose $g(x)$ is a function whose derivative is f.

(a) Suppose $y=x+7$ is the equation for the line tangent to the graph of $g(x)$ at $x=-3$. Let h be the function defined by $h(x)=(g(x))^{2}$. Find $h^{\prime}(-3)$.
(b) Describe the shape of the graph of $g(x)$ near $x=2$.
(c) Give a piecewise defined equation for $g^{\prime \prime}(x)$.
