3.4 Chain Rule

PRACTICE

| Find the derivative of the following.
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| Find the derivatives of the following.
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| Evaluate the derivative at a point.
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| Write the equation of the tangent line and the normal line at the point given.
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[ Particle Motion

15. The position of a particle moving along a coordinate line is s = +/1 + 4t , with 5 in meters and f in
seconds. Find the particle’s velocity att = 6. - by
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16. Ifs = =i 18 the position function of a moving particle for t = 0, then at what instant of time will the particle
start to reverse its direction of motion and where is it at the instant?
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| Find f'(5) given the following.
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1. The graph of the function f, shown below, consists of three line segments. Suppose g(x) is a function whose

derivativeis f.

Graph of f

(a) Suppose y = x + 7 is the equation for the line tangent to the graph of g(x) at x = —3. Let h be the function
defined by h(x) = (g(x))? . Find h'(-3).

h'(3) =2 (g (— 3))9’(—3) <+« | point for correct derivative set up

h'(3) = 2(4)(1) = 8 «——— 1 point for the solution

(b) Describe the shape of the graph of g(x) near x = 2. /‘\

As x approaches 2 from the left, the derivative is positive meaning the function is increasing.

As x approaches 2 from the right, the derivative is negative meaning the function is decreasing.

At x = 2, the denvative is zero which means the slope of the tangent line is zero causing a maximum or
minimum point. Since the function is increasing and then decreasing it must be a maximum point.
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(c) Give a piecewise defined equation for g"'(x).

(—3 —4 < x < =2
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flx)={ 2 —2<x<0 1 point for correct function
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