3.5 Trig Derivatives

Write your questions here!

Sine and Cosine

The derivative of trig functions

$\frac{d}{d y} \sin x=$	$\frac{d}{d y} \csc x=$
$\frac{d}{d y} \cos x=$	$\frac{d}{d y} \sec x=$
$\frac{d}{d y} \tan x=$	$\frac{d}{d y} \cot x=$

The "co's" are always negative and friends!

Find the derivative of the following.
$f(x)=\sin x+\tan x \quad y=\cos 3 x$

Evaluate the derivative at the given point.

$$
f(\theta)=4 \cos ^{3}(2 x) \text { at } \theta=\frac{\pi}{6}
$$

Find the equation for the line that is tangent and normal to

$$
y=\pi+2 \tan x \text { at } x=\pi
$$

BRING THE PAIN!

$y=x^{2} \csc (2 x)$
$y=\sqrt{4-\cos \left(x^{2}\right)}$

SUMMARY:

Warm Up! Find the derivative of the following.

1. $y=\cos 2 x$	2. $f(x)=2 \sin x$	3. $y=\cos ^{2} x$
4. $f(x)=\csc (\pi x)$	5. $y=-3 \tan \left(5 x^{3}\right)$	$6 . f(\theta)=5 \sec$
Warm Up! Evaluate the derivative at a point.		
7. $f(x)=3 \sin (2 x)$	8. $f(\theta)=-2 \csc \theta+4$	$9 . y=4 \sin ^{3} x$
$f^{\prime}\left(\frac{\pi}{3}\right)=$	$f^{\prime}\left(\frac{\pi}{2}\right)=$	$\left.\frac{d y}{d x}\right\|_{x=\frac{\pi}{4}}$

Find the derivative of the following.

10. $f(x)=2 \sin x+\cos x$
11. $g(x)=2 x \cos (4 x)$
12. $h(x)=\sqrt{\tan (2 x)}$

14. $f(x)=\frac{1}{2} x-2 \sin ^{3}(2 x)$
15. $y=\sec (\pi x+1)$
16. $r=\theta \sin \theta$
Evaluate the derivative at a point.
Write the equation of the tangent line and the normal line at the point given. 18. $f(x)=\cos (\tan x)$ $19 . y=\frac{\sin x}{x}$

20. $f(x)=\tan ^{2} x$ at $x=\frac{\pi}{4}$

Particle Motion

21. The position of a particle moving along a coordinate line is $s(t)=2 \sin \pi t+5 \cos \pi t$, with s in meters and t in seconds. Find the particle's velocity and acceleration at $t=1$.

MULTIPLE CHOICE

1. If $f(x)=\frac{\sin \sqrt{x}}{\sqrt{x}}$, then $f^{\prime}(x)$ is
(A) $\frac{\cos \sqrt{x}}{2 x}-\frac{\sin \sqrt{x}}{2 \sqrt{x^{3}}}$
(B) $\frac{\cos \sqrt{x}-\sin \sqrt{x}}{2 x}$
(C) $\frac{\sqrt{x} \cos \sqrt{x}-\frac{\sin \sqrt{x}}{2 \sqrt{x}}}{x}$
(D) $\cos \sqrt{x}$
(E) $\frac{\frac{\cos \sqrt{x}}{2}+\frac{\sin \sqrt{x}}{2 \sqrt{x}}}{x}$
2. What is $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h}$?
(A) -1
(B) $-\frac{\sqrt{2}}{2}$
(C) 0
(D) 1
(E) The limit does not exist.

You are allowed to use a graphing calculator for 3-5

3. Let $f(x)=\sqrt{2 x}$. If the rate of change of f at $x=c$ is four times its rate of change at $x=1$, then $c=$
(A) $\frac{1}{16}$
(B) $\frac{1}{2 \sqrt{2}}$
(C) $\frac{1}{\sqrt{2}}$
(D) 1
(E) 32
4. If $f(x)=-\frac{1}{|x|}$, then $f^{\prime}(2)=$
(A) 0.050
(B) -0.250
(C) 0.250
(D) -0.050
(E) -0.500
5. At time $t \geq 0$, the position of a particle moving along the x-axis is given by $x(t)=\frac{t^{3}}{3}+2 t+2$. For what value of t in the interval $[0,3]$ will the instantaneous velocity of the particle equal the average velocity of the particle from time $t=0$ to time $t=3$
(A) 1
(B) $\sqrt{3}$
(C) $\sqrt{7}$
(D) 3
(E) 5

You are allowed to use a graphing calculator on the Free Response

FREE RESPONSE

Your score: \qquad out of 5

1. The rate of change, in kilometers per hour, of the altitude of a hot air balloon is given by $r(t)=t^{3}-4 t^{2}+6$ for time $0 \leq t \leq 4$, where t is measured in hours. Assume the balloon is initially at ground level.
(a) For what values of $t, 0 \leq t \leq 4$, is the altitude of the balloon decreasing?
(b) Find the value of $r^{\prime}(2)$ and explain the meaning of the answer in the context of the problem. Indicate units of measure.
(c) When does the hot air balloon have an acceleration of zero? Justify.
