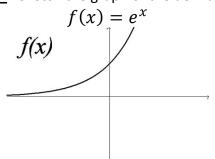
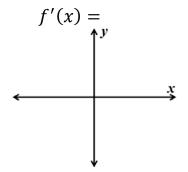
4.1 Exp and Log Derivatives

Name:

Notes

Recall: Sketch the graph of the derivative of f(x).





<u>Derivative of Exponential Functions (base *e*):</u>

No chain rule

$$\frac{d}{dx}e^x =$$

With chain rule

$$\frac{d}{dx}e^u =$$

Find the derivative of f(x).

1.
$$f(x) = e^{2x-3x^2}$$

$$2. f(x) = e^{\sin x}$$

Derivative of Exponential Functions (not base e):

No chain rule

$$\frac{d}{dx}a^x =$$

With chain rule

$$\frac{d}{dx}a^u =$$

3. Find the derivative of $y = 3^{6x} + 4$

Derivative of Logarithmic Functions (base *e***)**:

$$\frac{d}{dx}\ln x =$$

$$\frac{d}{dx}\ln u =$$

Find the derivative of f(x).

$$4. f(x) = \ln(\cos(x^2))$$

$$5. f(x) = \ln(\sqrt[3]{x})$$

Derivative of Logarithmic Functions (not base e):

No chain rule

$$\frac{d}{dx}\log_a x =$$

With chain rule

$$\frac{d}{dx}\log_a u =$$

Find the derivative of f(x).

6.
$$f(x) = \log_4(2x^5)$$

$$7. f(x) = \log_6(3x \tan x)$$

4.1 Exponential and Log Derivatives

Calculus Name:

Practice

Find the derivative of each function.

$$1. f(x) = e^{2x^2}$$

$$2. f(x) = e^{x^4}$$

$$3. f(x) = \ln(2x^3)$$

$$4. f(x) = \ln(x - 5x^5)$$

5.
$$f(x) = e^{\cos(7x^3)}$$

$$6. \ f(x) = e^{\sin(5x^9)}$$

7.
$$f(x) = \ln(x^6 + 5)$$

$$8. f(x) = \ln(2x\sqrt{1+x})$$

$$9. \ f(x) = 8^{\cos x}$$

$$10. \ f(x) = e^{x \sin x}$$

11.
$$f(x) = \log_7(x^4)$$

$$12. \ f(x) = \ln x \log x$$

13.
$$f(x) = \ln(\sin 4x) - x^4$$

14.
$$f(x) = e^{\pi x} - \ln(e^{\pi x})$$

15.
$$f(x) = e^{-5x} \cos 2x$$

16.
$$f(x) = \frac{e^{\tan 3x}}{3}$$

17.	f(x)	$= 2^{tan}$
-----	------	-------------

18.
$$f(x) = \log \sqrt{10^{5x}}$$

19.
$$f(x) = \frac{x}{e^{3x}}$$

20.
$$f(x) = x^7 7^x$$

21.
$$f(x) = \ln 11^x$$

22.
$$f(x) = e^{2x} - 2^{ex}$$

23.
$$f(x) = \cos(\ln(2x^2))$$

24. If $f(x) = e^{x^2}$, what is the equation of the tangent line at x = 1.

- 25. At what coordinate point(s) is the tangent line of $f(x) = \ln(x^3)$ parallel to y = 7 + 2x.
- 26. $f(x) = \ln(x^2)$ on the interval 1 < x < e. On this interval, when will the average rate of change equal the instantaneous rate of change. [This is applying the Mean Value Theorem]

- 27. Find the values of x where the tangent to the graph of $y = e^{2x}$ is parallel to 12x - 2y = 6.
- 28. Find the values of x where the tangent to the graph of $y = \frac{1}{e^{3x}}$ is parallel to 5x + y = 109.

Test Prep

4.1 Exponential and Log Derivatives

1.
$$\frac{d}{dx}(\ln(3x) 5^{2x}) =$$

(A)
$$\frac{5^{2x}}{x} + 2\ln(5)\ln(3x) 5^{2x}$$
 (B) $\frac{5^{2x}}{3x} - 2x\ln(3x) 5^{2x}$ (C) $\frac{5^{2x}}{x} - \ln(5)\ln(3x) 5^{2x}$

(B)
$$\frac{5^{2x}}{3x} - 2x \ln(3x) 5^{2x}$$

(C)
$$\frac{5^{2x}}{x} - \ln(5) \ln(3x) 5^{2x}$$

(D)
$$\frac{5^{2x}}{3x} + 2\ln(3x)5^{2x}$$

(D)
$$\frac{5^{2x}}{3x} + 2\ln(3x)5^{2x}$$
 (E) $\frac{5^{2x}}{x} + \ln(5)\ln(3x)5^{2x}$

- 2. The position of a particle moving along the x-axis is given by $x(t) = e^{2t} e^t$ for all $t \ge 0$. When the particle is at rest, the acceleration of the particle is
 - (A) $\frac{1}{2}$
- (B) $\frac{1}{4}$ (C) $\ln \frac{1}{2}$
- (D) 2
- (E) 4
- 3. What is the slope of the curve $y = 3^{\sin x} 2$ at its first positive x-intercept?

- (A) 0.683
- (B) 1.643
- (C) 1.705
- (D) 1.805
- (E) 2

4. Let $f(x) = 2e^{3x}$ and $g(x) = 5x^3$. At what value of x do the graphs of f and g have parallel tangents?

- (A) -0.445 (B) -0.366 (C) -0.344 (D) -0.251
- (E) -0.165

- 5. If $y = 3\cos\left(\frac{x}{3}\right)$ then $\frac{d^2y}{dx^2}$ =

- (A) $-3\cos\left(\frac{x}{3}\right)$ (B) $-3\sin\left(\frac{x}{3}\right)$ (C) $-\frac{1}{3}\cos\left(\frac{x}{3}\right)$ (D) $-\frac{1}{3}\sin\left(\frac{x}{3}\right)$ (E) $-\cos\left(\frac{x}{3}\right)$

Your score: _____ out of 4

FREE RESPONSE

2005 Form B AB3

A graphing calculator may be required. Use the space below the problem to show work and solutions.

- 1. A particle moves along the x-axis so that its velocity v at time t, for $0 \le t \le 5$, is given by $v(t) = \ln(t^2 - 3t + 3)$
 - (a) Find the acceleration of the particle at time t = 4.
 - (b) Find all times t in the open interval 0 < t < 5 at which the particle changes direction. During which time intervals, for 0 < t < 5, does the particle travel to the left?