
Write your questions here!

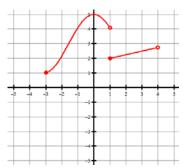
Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f has both a maximum and minimum value on the interval.

Find the critical points of the function.

$$f(x) = \frac{1}{3}x^3 - 9x + 24$$

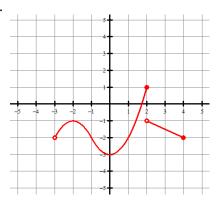
$$g(x) = \frac{1}{\sqrt{4 - x^2}}$$


Find the absolute maximum and minimum values of the function on the given interval.

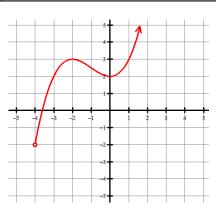
$$f(x) = x^3 - 3x^2 + 1, \quad \left[-\frac{1}{2}, 4 \right]$$

$$h(x) = 2x - 3x^{\frac{2}{3}}, \quad [-1, 3]$$

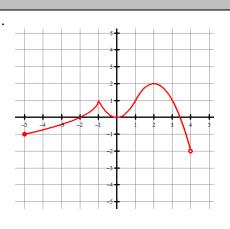
Find the extreme values and where they occur.



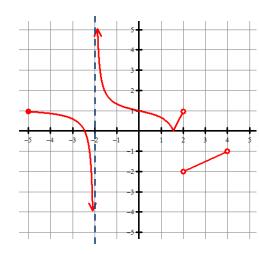
SUMMARY:



Find the extreme values and where they occur.


1.

2.



3.

Use the graph of f(x) to answer the following.

4.

Domain:

$$\lim_{x \to 2^+} f(x) =$$

$$\lim_{x \to -2} f(x) =$$

$$\lim_{x\to 0} f(x) =$$

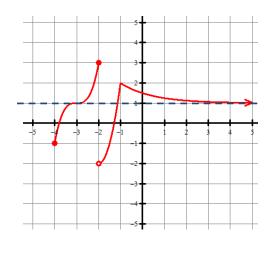
$$f(3) =$$

$$f'(3) =$$

Average rate of change over [-5, -3]

Absolute max:

Absolute min:


Local max:

Local min:

Interval(s) where f(x) increasing

Interval(s) where f(x) decreasing

5.

Domain:

$$\lim_{x \to -2^+} f(x) =$$

$$\lim_{x \to -2} f(x) =$$

$$\lim_{x\to\infty}f(x)=$$

$$f(-3) =$$

$$f'(-1) =$$

Average rate of change over [-4, -2]

Global max:

Global min:

Relative max:

Relative min:

Interval(s) where f(x) increasing

Interval(s) where f(x) decreasing

Find	the	critical	points.
LIIIU	uic	CITTICAL	POILIG.

6.
$$f(x) = 4x^3 - 9x^2 - 12x + 3$$

7.
$$g(t) = \frac{2}{t^2-4}$$

8.
$$h(x) = \sqrt[3]{x-2}$$

$$9. \ f(x) = (\ln x)^2$$

$$10. \ h(x) = 2\sin\left(\frac{x}{2}\right)$$

where
$$-2\pi \le x \le 2\pi$$

$$11. \ g(x) = e^x - x$$

Find the absolute maximum and minimum values of the function on the given interval.

12.
$$f(x) = 1 + (x+1)^2$$
, [-2,5]

13.
$$f(x) = 2x^3 + 3x^2 + 4$$
 [-2,1]

14.
$$f(x) = x^3 - 12x$$
, [0,3)

15.
$$h(x) = 3x^{\frac{2}{3}} - 2x$$
, $[-1, 1]$

Find the absolute maximum and minimum values of the function on the given interval.

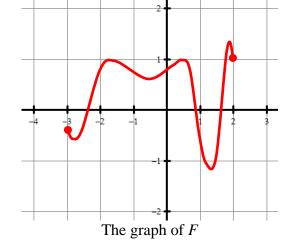
16.
$$g(x) = x^2 + \frac{2}{x}$$
, $(\frac{1}{2}, 2]$

17.
$$f(x) = \frac{x}{x^2 + 1}$$
, [-2,2]

18.
$$f(x) = \sin\left(x + \frac{\pi}{4}\right), \quad \left[0, \frac{7\pi}{4}\right]$$

19.
$$g(x) = xe^{2x}$$
, [-1,1]

5.1 Extreme Values


TEST PREP

MULTIPLE CHOICE

- 1. If f is a continuous, decreasing function on [0,10] with a critical point at (4,2), which of the following statements must be false?
 - (A) f(10) is an absolute minimum of f on [0,10].
 - (B) f(4) is neither a relative maximum nor a relative minimum.
 - (C) f'(4) does not exist
 - (D) f'(4) = 0
 - (E) f'(4) < 0

Questions 2 and 3 refer to the graph shown on the right.

- 2. Which of the following statements is false?
 - (A) F(-3) + F(2) > 0
 - (B) F(-1) + F'(-1) > 0
 - (C) $F'(-1) \cdot F'(-2) < 0$
 - (D) $F(1) \cdot F'(1) < 0$
 - (E) $F(0) \cdot F'(0) > 0$

- 3. The function F has exactly this many critical numbers.
 - (A) 4
 - (B) 5
 - (C) 6
 - (D) 7
 - (E) 8
- 4. Let $x(t) = t^{\frac{2}{3}}$ give the distance of a moving particle from its starting point as a function of time t. For what value of t is the instantaneous velocity of the particle equal to its average velocity over the interval [0,8]?
 - (A) $\frac{8}{27}$
 - (B) $\frac{27}{64}$
 - (C) $\frac{64}{27}$
 - (D) $\frac{27}{8}$
 - (E) $\frac{64}{9}$
- 5. What is the range of the function $f(x) = \frac{\ln x}{x}$ on the closed interval [1, e^2]?
 - (A) $f(1) \le f(x) \le f(e)$
 - (B) $f(1) \le f(x) \le f(e^2)$
 - (C) $f(2) \le f(x) \le f(e)$
 - (D) $f(e) \le f(x) \le f(e^2)$
 - (E) None of these

You will need a graphing calculator for #6

- 6. Find the value of c that satisfies the Mean Value Theorem for $f(x) = x \sin x$ on [1,4].
 - (A) 1.239
 - (B) 1.290
 - (C) 2.029
 - (D) 2.463
 - (E) 3.027