5.2 First Derivative Test

Corrective Assignment #2

DATE:_____

A particle moves along the *x*-axis with the position function given below. Find the velocity and use a sign chart to describe the motion of the particle.

3. $h(x) = x^3 - \frac{3}{2}x^2$

4. $g(x) = xe^x$

 $5. f(x) = \frac{1}{x} + x$

6. $g(x) = 2 + \sin x$ on the interval (0, 2π)

ANSWERS TO CORRECTIVE ASSIGNMENT

 f' does not change signs at x = -2 therefore f has neither relative maximum or minimum at x = -2 There is a relative maximum atx = 0 because f' changes from positive to negative. There is a relative minimum atx = 4 because f' changes from negative to positive. 		 2. There is a relative minimum at x = -2 because f' changes from negative to positive. f' does not change signs at x = 0 therefore f has neither relative maximum or minimum at x = 0 There is a relative maximum at x = 3.5 because f' changes from positive to negative.
3. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	g'(x) < 0 $g'(x)Decreasing Inc.$	5. ($-\infty$, -1) (-1 ,1) (1 , ∞) f'(x) > 0 $f'(x) > 0$ $f'(x) > 0Increasing Decreasing IncreasingThere is a relative maximum at x = -1 because f' changes from positive to negative.There is a relative minimum at x = 1 because f'changes from negative to positive.NOTE: x \neq 0$
6. $ \begin{array}{c c} & (0, \frac{\pi}{2}) & (\frac{\pi}{2}, \frac{3\pi}{2}) & (\frac{3\pi}{2}, 2\pi) \\ \hline & g'(x) > 0 & g'(x) < 0 & g'(x) > 0 \\ \hline & \text{Increasing} & \text{Decreasing} & \text{Increasing} \end{array} $	positi [.] There	to is a relative maximum at $x = \frac{\pi}{2}$ because g' changes from ve to negative. to is a relative minimum at $x = \frac{3\pi}{2}$ because g' changes from ive to positive.