\qquad
Corrective Assignment \#2

DATE:

\qquad

Given the graph of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, find the critical points and locate all relative extrema.

1.

2.

A particle moves along the x-axis with the position function given below. Find the velocity and use a sign chart to describe the motion of the particle.
3. $h(x)=x^{3}-\frac{3}{2} x^{2}$
4. $g(x)=x e^{x}$

Determine where the function is increasing and decreasing. Find the relative extrema.

5. $f(x)=\frac{1}{x}+x$
6. $g(x)=2+\sin x$ on the interval $(0,2 \pi)$

ANSWERS TO CORRECTIVE ASSIGNMENT

1. f^{\prime} does not change signs at $x=-2$ therefore f has neither relative maximum or minimum at $x=-2$

There is a relative maximum at $x=0$ because f^{\prime} changes from positive to negative.
There is a relative minimum at $x=4$ because f^{\prime} changes from negative to positive.
2. There is a relative minimum at $x=-2$ because f^{\prime} changes from negative to positive.
f^{\prime} does not change signs at $x=0$ therefore f has neither relative maximum or minimum at $x=0$

There is a relative maximum at $x=3.5$ because f^{\prime} changes from positive to negative.

3.			4.		5.		
$(-\infty, 0)$	$(0,1)$	$(1, \infty)$	$(-\infty,-1)$	$(-1, \infty)$	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
$\begin{gathered} h^{\prime}(x)>0 \\ \text { Increasing } \\ \text { Right } \\ \hline \end{gathered}$	$\begin{gathered} h^{\prime}(x)<0 \\ \text { Decreasing } \\ \text { Left } \end{gathered}$	$\begin{gathered} h^{\prime}(x)>0 \\ \text { Increasing } \\ \text { Right } \\ \hline \end{gathered}$	$\begin{gathered} g^{\prime}(x)<0 \\ \text { Decreasing } \\ \text { Left } \end{gathered}$	$\begin{gathered} g^{\prime}(x)>0 \\ \text { Increasing } \\ \text { Right } \\ \hline \end{gathered}$	$\begin{aligned} & f^{\prime}(x)>0 \\ & \text { Increasing } \end{aligned}$	$f^{\prime}(x)>0$ Decreasing	$\begin{aligned} & f^{\prime}(x)>0 \\ & \text { Increasing } \\ & \hline \end{aligned}$
					There is a relative maximum at $x=-1$ because f^{\prime} changes from positive to negative. There is a relative minimum at $x=1$ because f^{\prime} changes from negative to positive. NOTE: $x \neq 0$		
6.				There is a relative maximum at $x=\frac{\pi}{2}$ because g^{\prime} changes from positive to negative.			
$\left(0, \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$	$\left(\frac{3 \pi}{2}, 2 \pi\right)$					
$g^{\prime}(x)>0$ Increasing	$g^{\prime}(x)<0$ Decreasing	$g^{\prime}(x)>0$ Increasing		There is a re negative to	ve minimum itive.	$\mathrm{t} x=\frac{3 \pi}{2} \text { be }$	use g^{\prime} changes from

