\qquad

Corrective Assignment \#1

DATE:

\qquad

Given the graph of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, find the critical points and locate all relative extrema. ALWAYS JUSTIFY!
1.

A particle moves along the x-axis with the position function given below. Find the velocity and use a sign chart to describe the motion of the particle. ALWAYS JUSTIFY!
3. $h(x)=-2 x^{3}+6 x^{2}-3$
4. $f(x)=x e^{\frac{1}{x}}$
5. $f(x)=\frac{9 x}{x^{2}+9}$
6. $g(x)=\frac{1}{4} x^{4}-2 x^{2}$

ANSWERS TO CORRECTIVE ASSIGNMENT

1. There is a relative minimum at $x=-3$ because f^{\prime} changes from negative to positive.
There is a relative maximum at $x=-1$ because f^{\prime} changes from positive to negative.
There is a relative minimum at $x=3$ because f^{\prime} changes from negative to positive.
2. There is a relative minimum at $x=-2$ because f^{\prime} changes from negative to positive.

There is a relative maximum at $x=0$ because f^{\prime} changes from positive to negative.
There is a relative minimum at $x=1$ because f^{\prime} changes from negative to positive.
f^{\prime} does not change signs at $x=3$ therefore f has neither relative maximum or minimum at $x=3$

3.			4.			5.		
$(-\infty, 0)$	$(0,2)$	$(2, \infty)$	$(-\infty, 0)$	$(0,1)$	$(1, \infty)$	$(-\infty,-3)$	$(-3,3)$	$(3, \infty)$
$h^{\prime}(x)<0$ Decreasing Left	$\begin{gathered} h^{\prime}(x)>0 \\ \text { Increasing } \\ \text { Right } \end{gathered}$	$h^{\prime}(x)<0$ Decreasing Left	$\begin{gathered} f^{\prime}(x)>0 \\ \text { Increasing } \\ \text { Right } \end{gathered}$	$\begin{gathered} f^{\prime}(x)<0 \\ \text { Decreasing } \\ \text { Left } \end{gathered}$	$\begin{gathered} f^{\prime}(x)>0 \\ \text { Increasing } \\ \text { Right } \\ \hline \end{gathered}$	$\begin{array}{l\|c} \hline f^{\prime}(x)<0 & f^{\prime}(x)>0 \\ \text { Decreasing } & \text { Increasing } \\ \hline \end{array}$		$f^{\prime}(x)<0$ Decreasing
						There is a relative minimum at $x=-3$ because f^{\prime} changes from negative to positive. There is a relative maximum at $x=3$ because f^{\prime} changes from positive to negative.		
$(-\infty,-2)$	$(-2,0)$	$(0,2)$	$(2, \infty)$	There is a relative minimum at $x=-2$ because f^{\prime} changes from negative to positive.				
$g^{\prime}(x)<0$ Decreasing	$g^{\prime}(x)>0$	$g^{\prime}(x)<0$	$g^{\prime}(x)>0$ Increasing	There is a relative maximum at $x=0$ because f^{\prime} changes from positive to negative.				
Decreasing	Increasing	Decreasing	Increasing					
				There is a relative minimum at $x=2$ because f^{\prime} changes from negative to positive.				

